# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into models""" import argparse import numpy as np from mindspore import Tensor, context import mindspore.common.dtype as mstype from mindspore.train.serialization import load_checkpoint, export from src.finetune_eval_model import BertCLSModel, BertSquadModel, BertNERModel from src.finetune_eval_config import bert_net_cfg from src.bert_for_finetune import BertNER from src.utils import convert_labels_to_index parser = argparse.ArgumentParser(description='Bert export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument('--use_crf', type=str, default="false", help='Use cfg, default is false.') parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD"], default="NER", help='at present,support NER only') parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.') parser.add_argument("--batch_size", type=int, default=16, help="batch size") parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.') parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.') parser.add_argument('--output_file', type=str, default='Bert.air', help='bert output air name.') parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) label_list = [] with open(args.label_file_path) as f: for label in f: label_list.append(label.strip()) tag_to_index = convert_labels_to_index(label_list) if args.use_crf.lower() == "true": max_val = max(tag_to_index.values()) tag_to_index[""] = max_val + 1 tag_to_index[""] = max_val + 2 number_labels = len(tag_to_index) else: number_labels = args.num_class if __name__ == '__main__': if args.downstream_task == "NER": if args.use_crf.lower() == "true": net = BertNER(bert_net_cfg, args.batch_size, False, num_labels=number_labels, use_crf=True, tag_to_index=tag_to_index) else: net = BertNERModel(bert_net_cfg, False, number_labels, use_crf=(args.use_crf.lower() == "true")) elif args.downstream_task == "CLS": net = BertCLSModel(bert_net_cfg, False, num_labels=number_labels) elif args.downstream_task == "SQUAD": net = BertSquadModel(bert_net_cfg, False) else: raise ValueError("unsupported downstream task") load_checkpoint(args.ckpt_file, net=net) net.set_train(False) input_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) input_mask = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) token_type_id = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) label_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) if args.downstream_task == "NER" and args.use_crf.lower() == "true": input_data = [input_ids, input_mask, token_type_id, label_ids] else: input_data = [input_ids, input_mask, token_type_id] export(net, *input_data, file_name=args.output_file, file_format=args.file_format)