# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class TanhNet(nn.Cell): def __init__(self): super(TanhNet, self).__init__() self.tanh = P.Tanh() def construct(self, x): return self.tanh(x) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) self.network = network def construct(self, input_data, sens): gout = self.grad(self.network)(input_data, sens) return gout @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_Tanh(): x_np = np.array( [[0.28522366, 0.38033979, 1.54657853, -0.98530175, -0.54365635, 0.12652203, -1.33449938, -0.27737698], [2.06282293, 0.84635078, 0.16628414, -0.91823183, -0.72023044, -0.09147043, -0.04166984, -1.5664763], [-0.17157249, 0.44260951, -0.6683391, 1.13142613, 1.5536937, -0.32799768, -0.20016545, 0.06773927]], dtype=np.float32) dy_np = np.array( [[0.44969849, -0.187879, -0.64300827, 1.36638774, 0.89930276, -0.23835229, -0.67771854, -1.88984999], [2.00418801, 2.33336475, 0.00241747, 1.31558685, 0.06768817, -2.23008804, -0.26818366, -1.26873401], [1.83694105, 0.5339005, 0.51117424, 0.49202378, -0.83297819, -0.71001219, 0.18913512, 0.65580389]], dtype=np.float32) x_ms = Tensor(x_np) dy_ms = Tensor(dy_np) net = TanhNet() grad = Grad(net) output = grad(x_ms, dy_ms) expect = [[0.41501077, -0.16312202, -0.10675912, 0.58678646, 0.67828224, -0.23457714, -0.1643468, -1.75159405], [0.12541081, 1.2251587, 0.00235184, 0.62396731, 0.04191568, -2.21153283, -0.26771853, -0.20311764], [1.78391056, 0.44159236, 0.33690308, 0.16800483, -0.13651318, -0.63878956, 0.18175511, 0.65280384]] assert np.allclose(output[0].asnumpy(), expect)