# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import os import time import shutil import random import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.train.summary.summary_record import SummaryRecord context.set_context(mode=context.GRAPH_MODE, device_target="GPU") CUR_DIR = os.getcwd() SUMMARY_DIR_ME = CUR_DIR + "/test_me_summary_event_file/" SUMMARY_DIR_ME_TEMP = CUR_DIR + "/test_me_temp_summary_event_file/" def clean_environment_file(srcDir): if os.path.exists(srcDir): ls = os.listdir(srcDir) for line in ls: filePath = os.path.join(srcDir, line) os.remove(filePath) os.removedirs(srcDir) def save_summary_events_file(srcDir, desDir): if not os.path.exists(desDir): print("-- create desDir") os.makedirs(desDir) ls = os.listdir(srcDir) for line in ls: filePath = os.path.join(srcDir, line) if os.path.isfile(filePath): print("-- move events file : {}".format(filePath)) shutil.copy(filePath, desDir) os.remove(filePath) os.removedirs(srcDir) class SummaryNet(nn.Cell): def __init__(self, tag_tuple=None, scalar=1): super(SummaryNet, self).__init__() self.summary_s = P.ScalarSummary() self.summary_i = P.ImageSummary() self.summary_t = P.TensorSummary() self.histogram_summary = P.HistogramSummary() self.add = P.TensorAdd() self.tag_tuple = tag_tuple self.scalar = scalar def construct(self, x, y): self.summary_i("image", x) self.summary_s("x1", x) z = self.add(x, y) self.summary_t("z1", z) self.histogram_summary("histogram", z) return z def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y): net = SummaryNet() out_me_dict = {} for i in range(0, steps): x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32)) y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32)) out_put = net(x, y) test_writer.record(i) print("-----------------output: %s-------------\n", out_put.asnumpy()) out_me_dict[i] = out_put.asnumpy() return out_me_dict def me_scalar_summary(steps, tag=None, value=None): test_writer = SummaryRecord(SUMMARY_DIR_ME_TEMP) x = Tensor(np.array([1.1]).astype(np.float32)) y = Tensor(np.array([1.2]).astype(np.float32)) out_me_dict = train_summary_record_scalar_for_1(test_writer, steps, x, y) test_writer.close() return out_me_dict @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_scalarsummary_scalar1_step10_summaryrecord1(): clean_environment_file(SUMMARY_DIR_ME_TEMP) output_dict = me_scalar_summary(10) print("test_scalarsummary_scalar1_step10_summaryrecord1 \n", output_dict) save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME) clean_environment_file(SUMMARY_DIR_ME)