# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context class NetSoftmax(nn.Cell): def __init__(self): super(NetSoftmax, self).__init__() axis = -2 self.softmax1 = P.Softmax() self.softmax2 = P.Softmax(axis) def construct(self, x): return self.softmax1(x), self.softmax2(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_softmax(): x = Tensor(np.array([[0.1, 0.3, 0.6, -0.3], [0.2, -0.6, 0.8, 0.6], [0.6, -1.2, 0.4, 0.6]]).astype(np.float32)) expect1 = np.ones(3) expect2 = np.ones(4) error1 = expect1 * 1.0e-6 error2 = expect2 * 1.0e-6 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") Softmax = NetSoftmax() output = Softmax(x) outputSum1 = output[0].asnumpy().sum(axis=1) outputSum2 = output[1].asnumpy().sum(axis=0) diff1 = np.abs(outputSum1 - expect1) diff2 = np.abs(outputSum2 - expect2) assert np.all(diff1 < error1) assert np.all(diff2 < error2) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") Softmax = NetSoftmax() output = Softmax(x) outputSum1 = output[0].asnumpy().sum(axis=1) outputSum2 = output[1].asnumpy().sum(axis=0) diff1 = np.abs(outputSum1 - expect1) diff2 = np.abs(outputSum2 - expect2) assert np.all(diff1 < error1) assert np.all(diff2 < error2)