# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_smoothl1loss(): np.random.seed(42) prediction = np.random.randn(20).astype(np.float32) target = np.random.randn(20).astype(np.float32) sigma = 1.0 net = nn.SmoothL1Loss(sigma) loss = net(Tensor(prediction), Tensor(target)) expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304, 2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008, 0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174, 0.08826803, 1.109165] assert np.allclose(loss.asnumpy(), expect) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) self.network = network def construct(self, x1, x2, sens): gout = self.grad(self.network)(x1, x2, sens) return gout @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_smoothl1loss_grad(): np.random.seed(42) prediction = np.random.randn(20).astype(np.float32) target = np.random.randn(20).astype(np.float32) sens = np.random.randn(20).astype(np.float32) sigma = 1.0 net = nn.SmoothL1Loss(sigma) grad = Grad(net) dx = grad(Tensor(prediction), Tensor(target), Tensor(sens)) dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093, 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229, 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995, 0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451] dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093, -0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229, -0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995, -0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451] assert np.allclose(dx[0].asnumpy(), dx1_expect) assert np.allclose(dx[1].asnumpy(), dx2_expect)