# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in run_pretrain.py """ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C from mindspore import log as logger from .config import cfg def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None): """create train dataset""" # apply repeat operations files = os.listdir(data_dir) data_files = [] for file_name in files: if "tfrecord" in file_name: data_files.append(os.path.join(data_dir, file_name)) data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"], shuffle=ds.Shuffle.FILES if do_shuffle == "true" else False, num_shards=device_num, shard_id=rank, shard_equal_rows=True) ori_dataset_size = data_set.get_dataset_size() print('origin dataset size: ', ori_dataset_size) type_cast_op = C.TypeCast(mstype.int32) data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids") data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions") data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels") data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") # apply batch operations data_set = data_set.batch(cfg.batch_size, drop_remainder=True) logger.info("data size: {}".format(data_set.get_dataset_size())) logger.info("repeat count: {}".format(data_set.get_repeat_count())) return data_set def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, dataset_format="mindrecord", schema_file_path=None, do_shuffle=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) if dataset_format == "mindrecord": dataset = ds.MindDataset([data_file_path], columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) else: dataset = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) dataset = dataset.map(operations=type_cast_op_float, input_columns="label_ids") else: dataset = dataset.map(operations=type_cast_op, input_columns="label_ids") dataset = dataset.map(operations=type_cast_op, input_columns="segment_ids") dataset = dataset.map(operations=type_cast_op, input_columns="input_mask") dataset = dataset.map(operations=type_cast_op, input_columns="input_ids") dataset = dataset.repeat(repeat_count) # apply batch operations dataset = dataset.batch(batch_size, drop_remainder=True) return dataset def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy", data_file_path=None, schema_file_path=None, do_shuffle=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle) if assessment_method == "Spearman_correlation": type_cast_op_float = C.TypeCast(mstype.float32) data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids") else: data_set = data_set.map(operations=type_cast_op, input_columns="label_ids") data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") data_set = data_set.repeat(repeat_count) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set def generator_squad(data_features): for feature in data_features: yield (feature.input_ids, feature.input_mask, feature.segment_ids, feature.unique_id) def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, is_training=True, do_shuffle=True): """create finetune or evaluation dataset""" type_cast_op = C.TypeCast(mstype.int32) if is_training: data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None, columns_list=["input_ids", "input_mask", "segment_ids", "start_positions", "end_positions", "unique_ids", "is_impossible"], shuffle=do_shuffle) data_set = data_set.map(operations=type_cast_op, input_columns="start_positions") data_set = data_set.map(operations=type_cast_op, input_columns="end_positions") else: data_set = ds.GeneratorDataset(generator_squad(data_file_path), shuffle=do_shuffle, column_names=["input_ids", "input_mask", "segment_ids", "unique_ids"]) data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids") data_set = data_set.map(operations=type_cast_op, input_columns="input_mask") data_set = data_set.map(operations=type_cast_op, input_columns="input_ids") data_set = data_set.map(operations=type_cast_op, input_columns="unique_ids") data_set = data_set.repeat(repeat_count) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set