# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """ network config setting, will be used in train.py and eval.py """ from easydict import EasyDict as ed train_config = ed({ "TrainingConfig": { "epochs": 70, }, "DataConfig": { "train_manifest": 'data/libri_train_manifest.csv', # "val_manifest": 'data/libri_val_manifest.csv', "batch_size": 20, "labels_path": "labels.json", "SpectConfig": { "sample_rate": 16000, "window_size": 0.02, "window_stride": 0.01, "window": "hamming" }, "AugmentationConfig": { "speed_volume_perturb": False, "spec_augment": False, "noise_dir": '', "noise_prob": 0.4, "noise_min": 0.0, "noise_max": 0.5, } }, "ModelConfig": { "rnn_type": "LSTM", "hidden_size": 1024, "hidden_layers": 5, "lookahead_context": 20, }, "OptimConfig": { "learning_rate": 3e-4, "learning_anneal": 1.1, "weight_decay": 1e-5, "momentum": 0.9, "eps": 1e-8, "betas": (0.9, 0.999), "loss_scale": 1024, "epsilon": 0.00001 }, "CheckpointConfig": { "ckpt_file_name_prefix": 'DeepSpeech', "ckpt_path": './checkpoint', "keep_checkpoint_max": 10 } }) eval_config = ed({ "save_output": 'librispeech_val_output', "verbose": True, "DataConfig": { "test_manifest": 'data/libri_test_clean_manifest.csv', # "test_manifest": 'data/libri_test_other_manifest.csv', # "test_manifest": 'data/libri_val_manifest.csv', "batch_size": 20, "labels_path": "labels.json", "SpectConfig": { "sample_rate": 16000, "window_size": 0.02, "window_stride": 0.01, "window": "hanning" }, }, "ModelConfig": { "rnn_type": "LSTM", "hidden_size": 1024, "hidden_layers": 5, "lookahead_context": 20, }, "LMConfig": { "decoder_type": "greedy", "lm_path": './3-gram.pruned.3e-7.arpa', "top_paths": 1, "alpha": 1.818182, "beta": 0, "cutoff_top_n": 40, "cutoff_prob": 1.0, "beam_width": 1024, "lm_workers": 4 }, })