Browse Source

add exoirt air test

tags/v1.1.0
changzherui 5 years ago
parent
commit
ffeacf13e4
3 changed files with 339 additions and 3 deletions
  1. +2
    -2
      mindspore/train/callback/_time_monitor.py
  2. +2
    -1
      mindspore/train/serialization.py
  3. +335
    -0
      tests/st/export/test_export.py

+ 2
- 2
mindspore/train/callback/_time_monitor.py View File

@@ -36,7 +36,7 @@ class TimeMonitor(Callback):
self.epoch_time = time.time()

def epoch_end(self, run_context):
epoch_seconds = (time.time() - self.epoch_time) * 1000
epoch_seconds = time.time() - self.epoch_time
step_size = self.data_size
cb_params = run_context.original_args()
if hasattr(cb_params, "batch_num"):
@@ -49,4 +49,4 @@ class TimeMonitor(Callback):
return

step_seconds = epoch_seconds / step_size
print("Epoch time: {:5.3f}, per step time: {:5.3f}".format(epoch_seconds, step_seconds), flush=True)
print("Epoch time: {:5.3f}s, per step time: {:5.3f}s".format(epoch_seconds, step_seconds), flush=True)

+ 2
- 1
mindspore/train/serialization.py View File

@@ -378,7 +378,8 @@ def load_param_into_net(net, parameter_dict, strict_load=False):
logger.debug("%s", param_name)

logger.info("Load parameter into net finish.")
logger.warning("{} parameters in the net are not loaded.".format(len(param_not_load)))
if param_not_load:
logger.warning("{} parameters in the net are not loaded.".format(len(param_not_load)))
return param_not_load




+ 335
- 0
tests/st/export/test_export.py View File

@@ -0,0 +1,335 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test network export."""
import os
import numpy as np
import pytest

import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Dense
from mindspore.nn.cell import Cell
from mindspore.nn.layer.basic import Flatten
from mindspore.nn.layer.conv import Conv2d
from mindspore.nn.layer.normalization import BatchNorm2d
from mindspore.nn.layer.pooling import MaxPool2d
from mindspore.ops import operations as P
from mindspore.ops.operations import TensorAdd
from mindspore.train.serialization import export

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None):
init_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(init_value)


def variance_scaling_raw(shape):
variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(variance_scaling_value)


def weight_variable_0(shape):
zeros = np.zeros(shape).astype(np.float32)
return Tensor(zeros)


def weight_variable_1(shape):
ones = np.ones(shape).astype(np.float32)
return Tensor(ones)


def conv3x3(in_channels, out_channels, stride=1, padding=1):
"""3x3 convolution """
weight_shape = (out_channels, in_channels, 3, 3)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")


def conv1x1(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
weight_shape = (out_channels, in_channels, 1, 1)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")


def conv7x7(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
weight_shape = (out_channels, in_channels, 7, 7)
weight = variance_scaling_raw(weight_shape)
return Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")


def bn_with_initialize(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
gamma = weight_variable_1(shape)
bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn


def bn_with_initialize_last(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
gamma = weight_variable_0(shape)
bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn


def fc_with_initialize(input_channels, out_channels):
weight_shape = (out_channels, input_channels)
bias_shape = (out_channels)
weight = random_normal_init(weight_shape)
bias = weight_variable_0(bias_shape)

return Dense(input_channels, out_channels, weight, bias)


class ResidualBlock(Cell):
expansion = 4

def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlock, self).__init__()

out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)

self.relu = P.ReLU()
self.add = TensorAdd()

def construct(self, x):
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

out = self.add(out, identity)
out = self.relu(out)

return out


class ResidualBlockWithDown(Cell):
expansion = 4

def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlockWithDown, self).__init__()

out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
self.bn1 = bn_with_initialize(out_chls)

self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
self.bn2 = bn_with_initialize(out_chls)

self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)

self.relu = P.ReLU()
self.downSample = down_sample

self.conv_down_sample = conv1x1(
in_channels, out_channels, stride=stride, padding=0)
self.bn_down_sample = bn_with_initialize(out_channels)
self.add = TensorAdd()

def construct(self, x):
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)

out = self.add(out, identity)
out = self.relu(out)

return out


class MakeLayer0(Cell):

def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer0, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=1, down_sample=True)
self.b = block(out_channels, out_channels, stride=stride)
self.c = block(out_channels, out_channels, stride=1)

def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)

return x


class MakeLayer1(Cell):

def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer1, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)

def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)

return x


class MakeLayer2(Cell):

def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer2, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)
self.e = block(out_channels, out_channels, stride=1)
self.f = block(out_channels, out_channels, stride=1)

def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)
x = self.e(x)
x = self.f(x)

return x


class MakeLayer3(Cell):

def __init__(self, block, layer_num, in_channels, out_channels, stride):
super(MakeLayer3, self).__init__()
self.a = ResidualBlockWithDown(
in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)

def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)

return x


class ResNet(Cell):

def __init__(self, block, layer_num, num_classes=100):
super(ResNet, self).__init__()

self.conv1 = conv7x7(3, 64, stride=2, padding=3)

self.bn1 = bn_with_initialize(64)
self.relu = P.ReLU()
self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same")

self.layer1 = MakeLayer0(
block, layer_num[0], in_channels=64, out_channels=256, stride=1)
self.layer2 = MakeLayer1(
block, layer_num[1], in_channels=256, out_channels=512, stride=2)
self.layer3 = MakeLayer2(
block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
self.layer4 = MakeLayer3(
block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)

self.pool = nn.AvgPool2d(7, 1)
self.fc = fc_with_initialize(512 * block.expansion, num_classes)
self.flatten = Flatten()

def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.pool(x)
x = self.flatten(x)
x = self.fc(x)
return x


def resnet50(num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_export_resnet_air():
net = resnet50(10)
inputs = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
file_name = "resnet.air"
export(net, inputs, file_name=file_name, file_format='AIR')
assert os.path.exists(file_name)
os.remove(file_name)

Loading…
Cancel
Save