|
|
|
@@ -1,4 +1,4 @@ |
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd |
|
|
|
# Copyright 2019-2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
@@ -13,67 +13,93 @@ |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
class SqueezeNet(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
super(SqueezeNet, self).__init__() |
|
|
|
self.squeeze = P.Squeeze() |
|
|
|
|
|
|
|
def construct(self, tensor): |
|
|
|
return self.squeeze(tensor) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_bool(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.bool) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint8(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_int16(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.int16) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_int32(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.int32) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
|
|
|
|
def squeeze(nptype): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
|
|
|
|
def test_net_float16(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.float16) |
|
|
|
net = Net() |
|
|
|
np.random.seed(0) |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(nptype) |
|
|
|
net = SqueezeNet() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_float32(): |
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.float32) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(output.asnumpy()) |
|
|
|
assert np.all(output.asnumpy() == x.squeeze()) |
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_bool(): |
|
|
|
squeeze(np.bool) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_uint8(): |
|
|
|
squeeze(np.uint8) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_uint16(): |
|
|
|
squeeze(np.uint16) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_uint32(): |
|
|
|
squeeze(np.uint32) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_int8(): |
|
|
|
squeeze(np.int8) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_int16(): |
|
|
|
squeeze(np.int16) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_int32(): |
|
|
|
squeeze(np.int32) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_int64(): |
|
|
|
squeeze(np.int64) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_float16(): |
|
|
|
squeeze(np.float16) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_float32(): |
|
|
|
squeeze(np.float32) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_squeeze_float64(): |
|
|
|
squeeze(np.float64) |