Browse Source

delete opencv2

debug mindata

use new download
tags/v1.0.0
gongdaguo 5 years ago
parent
commit
fe59c9cf9b
10 changed files with 694 additions and 502 deletions
  1. +2
    -0
      model_zoo/official/lite/image_classification/.gitignore
  2. +278
    -0
      model_zoo/official/lite/image_classification/README.en.md
  3. +280
    -283
      model_zoo/official/lite/image_classification/README.md
  4. +12
    -25
      model_zoo/official/lite/image_classification/app/CMakeLists.txt
  5. +1
    -1
      model_zoo/official/lite/image_classification/app/build.gradle
  6. +14
    -76
      model_zoo/official/lite/image_classification/app/download.gradle
  7. BIN
      model_zoo/official/lite/image_classification/app/src/main/assets/model/mobilenetv2.ms
  8. +1
    -3
      model_zoo/official/lite/image_classification/app/src/main/cpp/MSNetWork.cpp
  9. +1
    -2
      model_zoo/official/lite/image_classification/app/src/main/cpp/MSNetWork.h
  10. +105
    -112
      model_zoo/official/lite/image_classification/app/src/main/cpp/MindSporeNetnative.cpp

+ 2
- 0
model_zoo/official/lite/image_classification/.gitignore View File

@@ -1,6 +1,8 @@
# MindSpore
build/
mindspore/lib
app/src/main/assets/model/
app/src/main/cpp/mindspore-lite-0.7.0-minddata-arm64-cpu
output
*.ir
mindspore/ccsrc/schema/inner/*


+ 278
- 0
model_zoo/official/lite/image_classification/README.en.md View File

@@ -0,0 +1,278 @@
## Demo_image_classification
The following describes how to use the MindSpore Lite C++ APIs (Android JNIs) and MindSpore Lite image classification models to perform on-device inference, classify the content captured by a device camera, and display the most possible classification result on the application's image preview screen.
### 运行依赖
- Android Studio 3.2 or later (Android 4.0 or later is recommended.)
- Native development kit (NDK) 21.3
- CMake 3.10.2 [CMake](https://cmake.org/download)
- Android software development kit (SDK) 26 or later
- JDK 1.8 or later [JDK]( https://www.oracle.com/downloads/otn-pub/java/JDK/)
### 构建与运行
1. Load the sample source code to Android Studio and install the corresponding SDK. (After the SDK version is specified, Android Studio automatically installs the SDK.)
![start_home](images/home.png)
Start Android Studio, click `File > Settings > System Settings > Android SDK`, and select the corresponding SDK. As shown in the following figure, select an SDK and click `OK`. Android Studio automatically installs the SDK.
![start_sdk](images/sdk_management.png)
(Optional) If an NDK version issue occurs during the installation, manually download the corresponding [NDK version](https://developer.android.com/ndk/downloads) (the version used in the sample code is 21.3). Specify the SDK location in `Android NDK location` of `Project Structure`.
![project_structure](images/project_structure.png)
2. Connect to an Android device and runs the image classification application.
Connect to the Android device through a USB cable for debugging. Click `Run 'app'` to run the sample project on your device.
![run_app](images/run_app.PNG)
For details about how to connect the Android Studio to a device for debugging, see <https://developer.android.com/studio/run/device?hl=zh-cn>.
The mobile phone needs to be turn on "USB debugging mode" before Android Studio can recognize the mobile phone. Huawei mobile phones generally turn on "USB debugging model" in Settings > system and update > developer Options > USB debugging.
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
Continue the installation on the Android device. After the installation is complete, you can view the content captured by a camera and the inference result.
![result](images/app_result.jpg)
## Detailed Description of the Sample Program
This image classification sample program on the Android device includes a Java layer and a JNI layer. At the Java layer, the Android Camera 2 API is used to enable a camera to obtain image frames and process images. At the JNI layer, the model inference process is completed in [Runtime](https://www.mindspore.cn/lite/tutorial/en/master/use/runtime.html).
### Sample Program Structure
```
app
├── src/main
│ ├── assets # resource files
| | └── mobilenetv2.ms # model file
│ |
│ ├── cpp # main logic encapsulation classes for model loading and prediction
| | |
| | ├── MindSporeNetnative.cpp # JNI methods related to MindSpore calling
│ | └── MindSporeNetnative.h # header file
│ |
│ ├── java # application code at the Java layer
│ │ └── com.huawei.himindsporedemo
│ │ ├── gallery.classify # implementation related to image processing and MindSpore JNI calling
│ │ │ └── ...
│ │ └── widget # implementation related to camera enabling and drawing
│ │ └── ...
│ │
│ ├── res # resource files related to Android
│ └── AndroidManifest.xml # Android configuration file
├── CMakeList.txt # CMake compilation entry file
├── build.gradle # Other Android configuration file
├── download.gradle # MindSpore version download
└── ...
```
### Configuring MindSpore Lite Dependencies
When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/build.html) to generate the MindSpore Lite version. 
```
android{
defaultConfig{
externalNativeBuild{
cmake{
arguments "-DANDROID_STL=c++_shared"
}
}
ndk{
abiFilters'armeabi-v7a', 'arm64-v8a'
}
}
}
```
Create a link to the `.so` library file in the `app/CMakeLists.txt` file:
```
# ============== Set MindSpore Dependencies. =============
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)
add_library(mindspore-lite SHARED IMPORTED )
add_library(minddata-lite SHARED IMPORTED )
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
# --------------- MindSpore Lite set End. --------------------
# Link target library.
target_link_libraries(
...
# --- mindspore ---
minddata-lite
mindspore-lite
...
)
```
* In this example, the download.gradle File configuration auto download MindSpore Lite version, placed in the 'app / src / main/cpp/mindspore_lite_x.x.x-minddata-arm64-cpu' directory.
Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.
MindSpore Lite version [MindSpore Lite version]( https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)
### Downloading and Deploying a Model File
In this example, the download.gradle File configuration auto download `mobilenetv2.ms `and placed in the 'app / libs / arm64-v8a' directory.
Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location.
mobilenetv2.ms [mobilenetv2.ms]( https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)
### Compiling On-Device Inference Code
Call MindSpore Lite C++ APIs at the JNI layer to implement on-device inference.
The inference code process is as follows. For details about the complete code, see `src/cpp/MindSporeNetnative.cpp`.
1. Load the MindSpore Lite model file and build the context, session, and computational graph for inference.
- Load a model file. Create and configure the context for model inference.
```cpp
// Buffer is the model data passed in by the Java layer
jlong bufferLen = env->GetDirectBufferCapacity(buffer);
char *modelBuffer = CreateLocalModelBuffer(env, buffer);
```
- Create a session.
```cpp
void **labelEnv = new void *;
MSNetWork *labelNet = new MSNetWork;
*labelEnv = labelNet;
// Create context.
mindspore::lite::Context *context = new mindspore::lite::Context;
context->thread_num_ = num_thread;
// Create the mindspore session.
labelNet->CreateSessionMS(modelBuffer, bufferLen, "device label", context);
delete(context);
```
- Load the model file and build a computational graph for inference.
```cpp
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx)
{
CreateSession(modelBuffer, bufferLen, ctx);
session = mindspore::session::LiteSession::CreateSession(ctx);
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
int ret = session->CompileGraph(model);
}
```
2. Convert the input image into the Tensor format of the MindSpore model.
Convert the image data to be detected into the Tensor format of the MindSpore model.
```cpp
// Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing
BitmapToMat(env, srcBitmap, matImageSrc);
// Processing such as zooming the picture size.
matImgPreprocessed = PreProcessImageData(matImageSrc);
ImgDims inputDims;
inputDims.channel = matImgPreprocessed.channels();
inputDims.width = matImgPreprocessed.cols;
inputDims.height = matImgPreprocessed.rows;
float *dataHWC = new float[inputDims.channel * inputDims.width * inputDims.height]
// Copy the image data to be detected to the dataHWC array.
// The dataHWC[image_size] array here is the intermediate variable of the input MindSpore model tensor.
float *ptrTmp = reinterpret_cast<float *>(matImgPreprocessed.data);
for(int i = 0; i < inputDims.channel * inputDims.width * inputDims.height; i++){
dataHWC[i] = ptrTmp[i];
}
// Assign dataHWC[image_size] to the input tensor variable.
auto msInputs = mSession->GetInputs();
auto inTensor = msInputs.front();
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
delete[] (dataHWC);
```
3. Perform inference on the input tensor based on the model, obtain the output tensor, and perform post-processing.
- Perform graph execution and on-device inference.
```cpp
// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
```
- Obtain the output data.
```cpp
auto names = mSession->GetOutputTensorNames();
std::unordered_map<std::string,mindspore::tensor::MSTensor *> msOutputs;
for (const auto &name : names) {
auto temp_dat =mSession->GetOutputByTensorName(name);
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
}
std::string retStr = ProcessRunnetResult(msOutputs, ret);
```
- Perform post-processing of the output data.
```cpp
std::string ProcessRunnetResult(std::unordered_map<std::string,
mindspore::tensor::MSTensor *> msOutputs, int runnetRet) {
std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
iter = msOutputs.begin();
// The mobilenetv2.ms model output just one branch.
auto outputTensor = iter->second;
int tensorNum = outputTensor->ElementsNum();
MS_PRINT("Number of tensor elements:%d", tensorNum);
// Get a pointer to the first score.
float *temp_scores = static_cast<float * >(outputTensor->MutableData());
float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
if (temp_scores[i] > 0.5) {
MS_PRINT("MindSpore scores[%d] : [%f]", i, temp_scores[i]);
}
scores[i] = temp_scores[i];
}
// Score for each category.
// Converted to text information that needs to be displayed in the APP.
std::string categoryScore = "";
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
categoryScore += labels_name_map[i];
categoryScore += ":";
std::string score_str = std::to_string(scores[i]);
categoryScore += score_str;
categoryScore += ";";
}
return categoryScore;
}
```

+ 280
- 283
model_zoo/official/lite/image_classification/README.md View File

@@ -1,283 +1,280 @@
## MindSpore Lite 端侧图像分类demo(Android)

本示例程序演示了如何在端侧利用MindSpore Lite C++ API(Android JNI)以及MindSpore Lite 图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在App图像预览界面中显示出最可能的分类结果。


### 运行依赖

- Android Studio >= 3.2 (推荐4.0以上版本)
- NDK 21.3
- CMake 3.10
- Android SDK >= 26
- OpenCV >= 4.0.0

### 构建与运行

1. 在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。

![start_home](images/home.png)

启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的SDK。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。

![start_sdk](images/sdk_management.png)

(可选)若安装时出现NDK版本问题,可手动下载相应的[NDK版本](https://developer.android.com/ndk/downloads?hl=zh-cn)(本示例代码使用的NDK版本为21.3),并在`Project Structure`的`Android NDK location`设置中指定SDK的位置。

![project_structure](images/project_structure.png)

2. 连接Android设备,运行图像分类应用程序。

通过USB连接Android设备调试,点击`Run 'app'`即可在您的设备上运行本示例项目。

* 注:编译过程中Android Studio会自动下载MindSpore Lite、OpenCV、模型文件等相关依赖项,编译过程需做耐心等待。

![run_app](images/run_app.PNG)

Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。

3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。

![install](images/install.jpg)

如下图所示,识别出的概率最高的物体是植物。

![result](images/app_result.jpg)


## 示例程序详细说明

本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层完成模型推理的过程。

> 此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。

### 示例程序结构

```
app
|
├── libs # 存放demo jni层依赖的库文件
│ └── arm64-v8a
│ ├── libopencv_java4.so # opencv
│ ├── libmlkit-label-MS.so # ndk编译生成的库文件
│ └── libmindspore-lite.so # mindspore lite
|
├── src/main
│ ├── assets # 资源文件
| | └── mobilenetv2.ms # 存放模型文件
│ |
│ ├── cpp # 模型加载和预测主要逻辑封装类
| | ├── include # 存放MindSpore调用相关的头文件
| | | └── ...
│ | |
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
│ | └── MindSporeNetnative.h # 头文件
│ |
│ ├── java # java层应用代码
│ │ └── com.huawei.himindsporedemo
│ │ ├── gallery.classify # 图像处理及MindSpore JNI调用相关实现
│ │ │ └── ...
│ │ └── obejctdetect # 开启摄像头及绘制相关实现
│ │ └── ...
│ │
│ ├── res # 存放Android相关的资源文件
│ └── AndroidManifest.xml # Android配置文件
├── CMakeList.txt # cmake编译入口文件
├── build.gradle # 其他Android配置文件
├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
└── ...
```

### 配置MindSpore Lite依赖项

Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite源码编译生成`libmindspore-lite.so`库文件。

在Android Studio中将编译完成的`libmindspore-lite.so`库文件(可包含多个兼容架构),分别放置在APP工程的`app/libs/arm64-v8a`(ARM64)或`app/libs/armeabi-v7a`(ARM32)目录下,并在应用的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`和`armeabi-v7a`的编译支持。

本示例中,build过程由download.gradle文件自动从华为服务器下载libmindspore-lite.so以及OpenCV的libopencv_java4.so库文件,并放置在`app/libs/arm64-v8a`目录下。

* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置:

libmindspore-lite.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)

libmindspore-lite include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/include.zip)

libopencv_java4.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/libopencv_java4.so)

libopencv include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/include.zip)


```
android{
defaultConfig{
externalNativeBuild{
cmake{
arguments "-DANDROID_STL=c++_shared"
}
}

ndk{
abiFilters 'arm64-v8a'
}
}
}
```

在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。

```
# Set MindSpore Lite Dependencies.
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore)
add_library(mindspore-lite SHARED IMPORTED )
set_target_properties(mindspore-lite PROPERTIES
IMPORTED_LOCATION "${CMAKE_SOURCE_DIR}/libs/libmindspore-lite.so")

# Set OpenCV Dependecies.
include_directories(${CMAKE_SOURCE_DIR}/opencv/sdk/native/jni/include)
add_library(lib-opencv SHARED IMPORTED )
set_target_properties(lib-opencv PROPERTIES
IMPORTED_LOCATION "${CMAKE_SOURCE_DIR}/libs/libopencv_java4.so")

# Link target library.
target_link_libraries(
...
mindspore-lite
lib-opencv
...
)
```

### 下载及部署模型文件

从MindSpore Model Hub中下载模型文件,本示例程序中使用的终端图像分类模型文件为`mobilenetv2.ms`,同样通过download.gradle脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。

* 注:若下载失败请手动下载模型文件,mobilenetv2.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)。


### 编写端侧推理代码

在JNI层调用MindSpore Lite C++ API实现端测推理。

推理代码流程如下,完整代码请参见`src/cpp/MindSporeNetnative.cpp`。

1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。

- 加载模型文件:创建并配置用于模型推理的上下文
```cpp
// Buffer is the model data passed in by the Java layer
jlong bufferLen = env->GetDirectBufferCapacity(buffer);
char *modelBuffer = CreateLocalModelBuffer(env, buffer);
```
- 创建会话
```cpp
void **labelEnv = new void *;
MSNetWork *labelNet = new MSNetWork;
*labelEnv = labelNet;
// Create context.
lite::Context *context = new lite::Context;
context->thread_num_ = numThread; //Specify the number of threads to run inference
// Create the mindspore session.
labelNet->CreateSessionMS(modelBuffer, bufferLen, context);
delete(context);
```
- 加载模型文件并构建用于推理的计算图
```cpp
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, mindspore::lite::Context* ctx)
{
CreateSession(modelBuffer, bufferLen, ctx);
session = mindspore::session::LiteSession::CreateSession(ctx);
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
int ret = session->CompileGraph(model); // Compile Graph
}
```
2. 将输入图片转换为传入MindSpore模型的Tensor格式。

将待检测图片数据转换为输入MindSpore模型的Tensor。

```cpp
// Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing
BitmapToMat(env, srcBitmap, matImageSrc);
// Processing such as zooming the picture size.
matImgPreprocessed = PreProcessImageData(matImageSrc);

ImgDims inputDims;
inputDims.channel = matImgPreprocessed.channels();
inputDims.width = matImgPreprocessed.cols;
inputDims.height = matImgPreprocessed.rows;
float *dataHWC = new float[inputDims.channel * inputDims.width * inputDims.height]

// Copy the image data to be detected to the dataHWC array.
// The dataHWC[image_size] array here is the intermediate variable of the input MindSpore model tensor.
float *ptrTmp = reinterpret_cast<float *>(matImgPreprocessed.data);
for(int i = 0; i < inputDims.channel * inputDims.width * inputDims.height; i++){
dataHWC[i] = ptrTmp[i];
}

// Assign dataHWC[image_size] to the input tensor variable.
auto msInputs = mSession->GetInputs();
auto inTensor = msInputs.front();
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
delete[] (dataHWC);
```
3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。

- 图执行,端测推理。

```cpp
// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
```

- 获取输出数据。
```cpp
// Get the mindspore inference results.
auto msOutputs = mSession->GetOutputMapByNode();
std::string retStr = ProcessRunnetResult(msOutputs);
```
- 输出数据的后续处理。
```cpp
std::string ProcessRunnetResult(
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> msOutputs){
// Get the branch of the model output.
// Use iterators to get map elements.
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>>::iterator iter;
iter = msOutputs.begin();

// The mobilenetv2.ms model output just one branch.
auto outputString = iter->first;
auto outputTensor = iter->second;

float *temp_scores = static_cast<float * >(branch1_tensor[0]->MutableData());
float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
if (temp_scores[i] > 0.5){
MS_PRINT("MindSpore scores[%d] : [%f]", i, temp_scores[i]);
}
scores[i] = temp_scores[i];
}
// Converted to text information that needs to be displayed in the APP.
std::string categoryScore = "";
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
categoryScore += g_labels_name_map[i];
categoryScore += ":";
std::string score_str = std::to_string(scores[i]);
categoryScore += score_str;
categoryScore += ";";
}
return categoryScore;
}
```
## MindSpore Lite 端侧图像分类demo(Android)
本示例程序演示了如何在端侧利用MindSpore Lite C++ API(Android JNI)以及MindSpore Lite 图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在App图像预览界面中显示出最可能的分类结果。
### 运行依赖
- Android Studio >= 3.2 (推荐4.0以上版本)
- NDK 21.3
- CMake 3.10.2 [CMake](https://cmake.org/download)
- Android SDK >= 26
- JDK >= 1.8 [JDK]( https://www.oracle.com/downloads/otn-pub/java/JDK/)
### 构建与运行
1. 在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。
![start_home](images/home.png)
启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的SDK。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。
![start_sdk](images/sdk_management.png)
(可选)若安装时出现NDK版本问题,可手动下载相应的[NDK版本](https://developer.android.com/ndk/downloads?hl=zh-cn)(本示例代码使用的NDK版本为21.3),并在`Project Structure`的`Android NDK location`设置中指定SDK的位置。
![project_structure](images/project_structure.png)
2. 连接Android设备,运行图像分类应用程序。
通过USB连接Android设备调试,点击`Run 'app'`即可在您的设备上运行本示例项目。
* 注:编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
![run_app](images/run_app.PNG)
Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
手机需开启“USB调试模式”,Android Studio 才能识别到手机。 华为手机一般在设置->系统和更新->开发人员选项->USB调试中开始“USB调试模型”。
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
![install](images/install.jpg)
如下图所示,识别出的概率最高的物体是植物。
![result](images/app_result.jpg)
## 示例程序详细说明
本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层完成模型推理的过程。
> 此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
### 示例程序结构
```
app
├── src/main
│ ├── assets # 资源文件
| | └── mobilenetv2.ms # 存放模型文件
│ |
│ ├── cpp # 模型加载和预测主要逻辑封装类
| | ├── ..
| | ├── mindspore_lite_x.x.x-minddata-arm64-cpu #MindSpore Lite版本
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
│ | └── MindSporeNetnative.h # 头文件
| | └── MsNetWork.cpp # MindSpre接口封装
│ |
│ ├── java # java层应用代码
│ │ └── com.huawei.himindsporedemo
│ │ ├── gallery.classify # 图像处理及MindSpore JNI调用相关实现
│ │ │ └── ...
│ │ └── widget # 开启摄像头及绘制相关实现
│ │ └── ...
│ │
│ ├── res # 存放Android相关的资源文件
│ └── AndroidManifest.xml # Android配置文件
├── CMakeList.txt # cmake编译入口文件
├── build.gradle # 其他Android配置文件
├── download.gradle # 工程依赖文件下载
└── ...
```
### 配置MindSpore Lite依赖项
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite源码编译生成`libmindspore-lite.so`库文件。
本示例中,build过程由download.gradle文件自动从华为服务器下载MindSpore Lite 版本文件,并放置在`app / src / main/cpp/mindspore_lite_x.x.x-minddata-arm64-cpu`目录下。
* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置:
MindSpore Lite版本 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)
```
android{
defaultConfig{
externalNativeBuild{
cmake{
arguments "-DANDROID_STL=c++_shared"
}
}
ndk{
abiFilters 'arm64-v8a'
}
}
}
```
在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
```
# ============== Set MindSpore Dependencies. =============
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)
add_library(mindspore-lite SHARED IMPORTED )
add_library(minddata-lite SHARED IMPORTED )
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
# --------------- MindSpore Lite set End. --------------------
# Link target library.
target_link_libraries(
...
# --- mindspore ---
minddata-lite
mindspore-lite
...
)
```
### 下载及部署模型文件
从MindSpore Model Hub中下载模型文件,本示例程序中使用的终端图像分类模型文件为`mobilenetv2.ms`,同样通过download.gradle脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。
* 注:若下载失败请手动下载模型文件,mobilenetv2.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)。
### 编写端侧推理代码
在JNI层调用MindSpore Lite C++ API实现端测推理。
推理代码流程如下,完整代码请参见`src/cpp/MindSporeNetnative.cpp`。
1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
- 加载模型文件:创建并配置用于模型推理的上下文
```cpp
// Buffer is the model data passed in by the Java layer
jlong bufferLen = env->GetDirectBufferCapacity(buffer);
char *modelBuffer = CreateLocalModelBuffer(env, buffer);
```
- 创建会话
```cpp
void **labelEnv = new void *;
MSNetWork *labelNet = new MSNetWork;
*labelEnv = labelNet;
// Create context.
lite::Context *context = new lite::Context;
context->thread_num_ = numThread; //Specify the number of threads to run inference
// Create the mindspore session.
labelNet->CreateSessionMS(modelBuffer, bufferLen, context);
delete(context);
```
- 加载模型文件并构建用于推理的计算图
```cpp
void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx)
{
CreateSession(modelBuffer, bufferLen, ctx);
session = mindspore::session::LiteSession::CreateSession(ctx);
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
int ret = session->CompileGraph(model);
}
```
2. 将输入图片转换为传入MindSpore模型的Tensor格式。
将待检测图片数据转换为输入MindSpore模型的Tensor。
```cpp
// Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing
BitmapToMat(env, srcBitmap, matImageSrc);
// Processing such as zooming the picture size.
matImgPreprocessed = PreProcessImageData(matImageSrc);
ImgDims inputDims;
inputDims.channel = matImgPreprocessed.channels();
inputDims.width = matImgPreprocessed.cols;
inputDims.height = matImgPreprocessed.rows;
float *dataHWC = new float[inputDims.channel * inputDims.width * inputDims.height]
// Copy the image data to be detected to the dataHWC array.
// The dataHWC[image_size] array here is the intermediate variable of the input MindSpore model tensor.
float *ptrTmp = reinterpret_cast<float *>(matImgPreprocessed.data);
for(int i = 0; i < inputDims.channel * inputDims.width * inputDims.height; i++){
dataHWC[i] = ptrTmp[i];
}
// Assign dataHWC[image_size] to the input tensor variable.
auto msInputs = mSession->GetInputs();
auto inTensor = msInputs.front();
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
delete[] (dataHWC);
```
3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。
- 图执行,端测推理。
```cpp
// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
```
- 获取输出数据。
```cpp
auto names = mSession->GetOutputTensorNames();
std::unordered_map<std::string,mindspore::tensor::MSTensor *> msOutputs;
for (const auto &name : names) {
auto temp_dat =mSession->GetOutputByTensorName(name);
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
}
std::string retStr = ProcessRunnetResult(msOutputs, ret);
```
- 输出数据的后续处理。
```cpp
std::string ProcessRunnetResult(std::unordered_map<std::string,
mindspore::tensor::MSTensor *> msOutputs, int runnetRet) {
std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
iter = msOutputs.begin();
// The mobilenetv2.ms model output just one branch.
auto outputTensor = iter->second;
int tensorNum = outputTensor->ElementsNum();
MS_PRINT("Number of tensor elements:%d", tensorNum);
// Get a pointer to the first score.
float *temp_scores = static_cast<float * >(outputTensor->MutableData());
float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
if (temp_scores[i] > 0.5) {
MS_PRINT("MindSpore scores[%d] : [%f]", i, temp_scores[i]);
}
scores[i] = temp_scores[i];
}
// Score for each category.
// Converted to text information that needs to be displayed in the APP.
std::string categoryScore = "";
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
categoryScore += labels_name_map[i];
categoryScore += ":";
std::string score_str = std::to_string(scores[i]);
categoryScore += score_str;
categoryScore += ";";
}
return categoryScore;
}
```

+ 12
- 25
model_zoo/official/lite/image_classification/app/CMakeLists.txt View File

@@ -6,39 +6,28 @@
cmake_minimum_required(VERSION 3.4.1)

set(CMAKE_VERBOSE_MAKEFILE on)
set(libs ${CMAKE_SOURCE_DIR}/libs)


set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/libs/${ANDROID_ABI})

set(MINDSPORELITE_VERSION mindspore-lite-0.7.0-minddata-arm64-cpu)

# ============== Set MindSpore Dependencies. =============
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore/flatbuffers)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore/ir/dtype)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include/MindSpore/schema)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype)
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema)

add_library(mindspore-lite SHARED IMPORTED )
add_library(minddata-lite SHARED IMPORTED )

set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/libs/${ANDROID_ABI}/libmindspore-lite.so)
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
# --------------- MindSpore Lite set End. --------------------



# =============== Set OpenCV Dependencies ===================

include_directories(${CMAKE_SOURCE_DIR}/opencv/sdk/native/jni/include/)

add_library(lib-opencv SHARED IMPORTED )

set_target_properties(lib-opencv PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/libs/${ANDROID_ABI}/libopencv_java4.so)

# --------------- OpenCV set End. ---------------------------


# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
@@ -79,10 +68,8 @@ add_definitions(-DMNN_USE_LOGCAT)
target_link_libraries( # Specifies the target library.
mlkit-label-MS

# --- opencv ---
lib-opencv

# --- mindspore ---
minddata-lite
mindspore-lite

# --- other dependencies.---


+ 1
- 1
model_zoo/official/lite/image_classification/app/build.gradle View File

@@ -49,7 +49,7 @@ android {
}
}
packagingOptions{
pickFirst 'lib/arm64-v8a/libopencv_java4.so'
pickFirst 'lib/arm64-v8a/libminddata-lite.so'
pickFirst 'lib/arm64-v8a/libmindspore-lite.so'
pickFirst 'lib/arm64-v8a/libmlkit-label-MS.so'
}


+ 14
- 76
model_zoo/official/lite/image_classification/app/download.gradle View File

@@ -1,27 +1,18 @@
/**
* To download necessary library from HuaWei server.
* Including mindspore-lite .so file, opencv .so file and model file.
* Including mindspore-lite .so file, minddata-lite .so file and model file.
* The libraries can be downloaded manually.
*/

def targetopenCVInclude = "src/main/cpp/include"
def targetMindSporeInclude = "src/main/cpp/include"

def targetMindSporeInclude = "src/main/cpp/"
def mindsporeLite_Version = "mindspore-lite-0.7.0-minddata-arm64-cpu"

def targetModelFile = "src/main/assets/model/mobilenetv2.ms"
def openCVLibrary_arm64 = "libs/arm64-v8a/libopencv_java4.so"
def mindSporeLibrary_arm64 = "libs/arm64-v8a/libmindspore-lite.so"
def openCVlibIncluding_arm64 = "src/main/cpp/include/opencv2/include.zip"
def mindSporeLibIncluding_arm64 = "src/main/cpp/include/MindSpore/include.zip"
def mindSporeLibrary_arm64 = "src/main/cpp/${mindsporeLite_Version}.tar.gz"

def modelDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms"
def opencvDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/libopencv_java4.so"
def mindsporeLiteDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so"
def opencvincludeDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/include.zip"
def mindsporeIncludeDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/include.zip"
def mindsporeLiteDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/${mindsporeLite_Version}.tar.gz"

def cleantargetopenCVInclude = "src/main/cpp/include/opencv2"
def cleantargetMindSporeInclude = "src/main/cpp/include/MindSpore"
def cleantargetMindSporeInclude = "src/main/cpp"


task downloadModelFile(type: DownloadUrlTask) {
@@ -32,15 +23,6 @@ task downloadModelFile(type: DownloadUrlTask) {
target = file("${targetModelFile}")
}


task downloadOpenCVLibrary(type: DownloadUrlTask) {
doFirst {
println "Downloading ${opencvDownloadUrl}"
}
sourceUrl = "${opencvDownloadUrl}"
target = file("${openCVLibrary_arm64}")
}

task downloadMindSporeLibrary(type: DownloadUrlTask) {
doFirst {
println "Downloading ${mindsporeLiteDownloadUrl}"
@@ -49,80 +31,36 @@ task downloadMindSporeLibrary(type: DownloadUrlTask) {
target = file("${mindSporeLibrary_arm64}")
}

task downloadopecvIncludeLibrary(type: DownloadUrlTask) {
doFirst {
println "Downloading ${opencvincludeDownloadUrl}"
}
sourceUrl = "${opencvincludeDownloadUrl}"
target = file("${openCVlibIncluding_arm64}")
}

task downloadMindSporeIncludeLibrary(type: DownloadUrlTask) {
doFirst {
println "Downloading ${mindsporeIncludeDownloadUrl}"
}
sourceUrl = "${mindsporeIncludeDownloadUrl}"
target = file("${mindSporeLibIncluding_arm64}")
}

task unzipopencvInclude(type: Copy, dependsOn: 'downloadopecvIncludeLibrary') {
task unzipMindSporeInclude(type: Copy, dependsOn: 'downloadMindSporeLibrary') {
doFirst {
println "Unzipping ${openCVlibIncluding_arm64}"
println "Unzipping ${mindSporeLibrary_arm64}"
}
from zipTree("${openCVlibIncluding_arm64}")
into "${targetopenCVInclude}"
}

task unzipMindSporeInclude(type: Copy, dependsOn: 'downloadMindSporeIncludeLibrary') {
doFirst {
println "Unzipping ${mindSporeLibIncluding_arm64}"
}
from zipTree("${mindSporeLibIncluding_arm64}")
from tarTree(resources.gzip("${mindSporeLibrary_arm64}"))
into "${targetMindSporeInclude}"
}

task cleanUnusedopencvFiles(type: Delete, dependsOn: ['unzipopencvInclude']) {
delete fileTree("${cleantargetopenCVInclude}").matching {
include "*.zip"
}
}
task cleanUnusedmindsporeFiles(type: Delete, dependsOn: ['unzipMindSporeInclude']) {
delete fileTree("${cleantargetMindSporeInclude}").matching {
include "*.zip"
include "*.tar.gz"
}
}
/*
* Using preBuild to download mindspore library, opencv library and model file.
* Run before gradle build.
*/
if (file("libs/arm64-v8a/libmindspore-lite.so").exists()){
if (file("src/main/cpp/${mindsporeLite_Version}/lib/libmindspore-lite.so").exists()){
downloadMindSporeLibrary.enabled = false
unzipMindSporeInclude.enabled = false
cleanUnusedmindsporeFiles.enabled = false
}

if (file("libs/arm64-v8a/libopencv_java4.so").exists()){
downloadOpenCVLibrary.enabled = false
}
if (file("src/main/assets/model/mobilenetv2.ms").exists()){
downloadModelFile.enabled = false
}

if (file("src/main/cpp/include/MindSpore/lite_session.h").exists()){
downloadMindSporeIncludeLibrary.enabled = false
unzipopencvInclude.enabled = false
cleanUnusedopencvFiles.enabled =false
}
if (file("src/main/cpp/include/opencv2/core.hpp").exists()){
downloadopecvIncludeLibrary.enabled = false
unzipMindSporeInclude.enabled = false
cleanUnusedmindsporeFiles.enabled =false
}

preBuild.dependsOn downloadMindSporeLibrary
preBuild.dependsOn downloadOpenCVLibrary
preBuild.dependsOn downloadModelFile
preBuild.dependsOn unzipopencvInclude
preBuild.dependsOn downloadMindSporeLibrary
preBuild.dependsOn unzipMindSporeInclude
preBuild.dependsOn cleanUnusedopencvFiles
preBuild.dependsOn cleanUnusedmindsporeFiles

class DownloadUrlTask extends DefaultTask {


BIN
model_zoo/official/lite/image_classification/app/src/main/assets/model/mobilenetv2.ms View File


+ 1
- 3
model_zoo/official/lite/image_classification/app/src/main/cpp/MSNetWork.cpp View File

@@ -18,7 +18,7 @@
#include <android/log.h>
#include <iostream>
#include <string>
#include "include/MindSpore/errorcode.h"
#include "include/errorcode.h"

#define MS_PRINT(format, ...) __android_log_print(ANDROID_LOG_INFO, "MSJNI", format, ##__VA_ARGS__)

@@ -54,8 +54,6 @@ int MSNetWork::ReleaseNets(void) {
return 0;
}

const int MSNetWork::RET_CATEGORY_SUM = 601;

const char *MSNetWork::labels_name_map[MSNetWork::RET_CATEGORY_SUM] = {
{"Tortoise"}, {"Container"}, {"Magpie"}, {"Seaturtle"}, {"Football"}, {"Ambulance"}, {"Ladder"},
{"Toothbrush"}, {"Syringe"}, {"Sink"}, {"Toy"}, {"Organ(MusicalInstrument) "}, {"Cassettedeck"},


+ 1
- 2
model_zoo/official/lite/image_classification/app/src/main/cpp/MSNetWork.h View File

@@ -52,10 +52,9 @@ class MSNetWork {

int ReleaseNets(void);

private:
mindspore::session::LiteSession *session;
mindspore::lite::Model *model;
static const int RET_CATEGORY_SUM;
static const int RET_CATEGORY_SUM = 601;
static const char *labels_name_map[RET_CATEGORY_SUM];
};
#endif

+ 105
- 112
model_zoo/official/lite/image_classification/app/src/main/cpp/MindSporeNetnative.cpp View File

@@ -13,104 +13,27 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <android/bitmap.h>
#include <android/asset_manager_jni.h>
#include <android/log.h>
#include <MindSpore/errorcode.h>
#include <MindSpore/ms_tensor.h>
#include <jni.h>
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <set>
#include "include/errorcode.h"
#include "include/ms_tensor.h"
#include "MindSporeNetnative.h"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "MSNetWork.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"

using mindspore::dataset::LiteMat;
using mindspore::dataset::LPixelType;
using mindspore::dataset::LDataType;
#define MS_PRINT(format, ...) __android_log_print(ANDROID_LOG_INFO, "MSJNI", format, ##__VA_ARGS__)

void BitmapToMat2(JNIEnv *env, const jobject &bitmap, cv::Mat *mat,
jboolean needUnPremultiplyAlpha) {
AndroidBitmapInfo info;
void *pixels = nullptr;
cv::Mat &dst = *mat;
CV_Assert(AndroidBitmap_getInfo(env, bitmap, &info) >= 0);
CV_Assert(info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565);
CV_Assert(AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0);
CV_Assert(pixels);
dst.create(info.height, info.width, CV_8UC4);
if (info.format == ANDROID_BITMAP_FORMAT_RGBA_8888) {
cv::Mat tmp(info.height, info.width, CV_8UC4, pixels);
if (needUnPremultiplyAlpha) {
cvtColor(tmp, dst, cv::COLOR_RGBA2BGR);
} else {
tmp.copyTo(dst);
}
} else {
cv::Mat tmp(info.height, info.width, CV_8UC4, pixels);
cvtColor(tmp, dst, cv::COLOR_BGR5652RGBA);
}
AndroidBitmap_unlockPixels(env, bitmap);
return;
}

void BitmapToMat(JNIEnv *env, const jobject &bitmap, cv::Mat *mat) {
BitmapToMat2(env, bitmap, mat, true);
}

/**
* Processing image with resize and normalize.
*/
cv::Mat PreProcessImageData(cv::Mat input) {
cv::Mat imgFloatTmp, imgResized256, imgResized224;
int resizeWidth = 256;
int resizeHeight = 256;
float normalizMin = 1.0;
float normalizMax = 255.0;

cv::resize(input, imgFloatTmp, cv::Size(resizeWidth, resizeHeight));

imgFloatTmp.convertTo(imgResized256, CV_32FC3, normalizMin / normalizMax);

const int offsetX = 16;
const int offsetY = 16;
const int cropWidth = 224;
const int cropHeight = 224;

// Standardization processing.
float meanR = 0.485;
float meanG = 0.456;
float meanB = 0.406;
float varR = 0.229;
float varG = 0.224;
float varB = 0.225;

cv::Rect roi;
roi.x = offsetX;
roi.y = offsetY;
roi.width = cropWidth;
roi.height = cropHeight;

// The final image size of the incoming model is 224*224.
imgResized256(roi).copyTo(imgResized224);

cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
cv::Scalar var = cv::Scalar(varR, varG, varB);
cv::Mat imgResized1;
cv::Mat imgResized2;
cv::Mat imgMean(imgResized224.size(), CV_32FC3,
mean); // imgMean Each pixel channel is (0.485, 0.456, 0.406)
cv::Mat imgVar(imgResized224.size(), CV_32FC3,
var); // imgVar Each pixel channel is (0.229, 0.224, 0.225)
imgResized1 = imgResized224 - imgMean;
imgResized2 = imgResized1 / imgVar;
return imgResized2;
}

char *CreateLocalModelBuffer(JNIEnv *env, jobject modelBuffer) {
jbyte *modelAddr = static_cast<jbyte *>(env->GetDirectBufferAddress(modelBuffer));
int modelLen = static_cast<int>(env->GetDirectBufferCapacity(modelBuffer));
@@ -126,21 +49,20 @@ char *CreateLocalModelBuffer(JNIEnv *env, jobject modelBuffer) {
*/
std::string
ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_map[],
std::unordered_map<std::string,
std::vector<mindspore::tensor::MSTensor *>> msOutputs) {
std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs) {
// Get the branch of the model output.
// Use iterators to get map elements.
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>>::iterator iter;
std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
iter = msOutputs.begin();

// The mobilenetv2.ms model output just one branch.
auto outputTensor = iter->second;

int tensorNum = outputTensor[0]->ElementsNum();
int tensorNum = outputTensor->ElementsNum();
MS_PRINT("Number of tensor elements:%d", tensorNum);

// Get a pointer to the first score.
float *temp_scores = static_cast<float * >(outputTensor[0]->MutableData());
float *temp_scores = static_cast<float * >(outputTensor->MutableData());

float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
@@ -163,6 +85,72 @@ ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_ma
return categoryScore;
}

bool BitmapToLiteMat(JNIEnv *env, const jobject &srcBitmap, LiteMat *lite_mat) {
bool ret = false;
AndroidBitmapInfo info;
void *pixels = nullptr;
LiteMat &lite_mat_bgr = *lite_mat;
AndroidBitmap_getInfo(env, srcBitmap, &info);
if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
MS_PRINT("Image Err, Request RGBA");
return false;
}
AndroidBitmap_lockPixels(env, srcBitmap, &pixels);
if (info.stride == info.width*4) {
ret = InitFromPixel(reinterpret_cast<const unsigned char *>(pixels),
LPixelType::RGBA2RGB, LDataType::UINT8,
info.width, info.height, lite_mat_bgr);
if (!ret) {
MS_PRINT("Init From RGBA error");
}
} else {
unsigned char *pixels_ptr = new unsigned char[info.width*info.height*4];
unsigned char *ptr = pixels_ptr;
unsigned char *data = reinterpret_cast<unsigned char *>(pixels);
for (int i = 0; i < info.height; i++) {
memcpy(ptr, data, info.width*4);
ptr += info.width*4;
data += info.stride;
}
ret = InitFromPixel(reinterpret_cast<const unsigned char *>(pixels_ptr),
LPixelType::RGBA2RGB, LDataType::UINT8,
info.width, info.height, lite_mat_bgr);
if (!ret) {
MS_PRINT("Init From RGBA error");
}
delete[] (pixels_ptr);
}
AndroidBitmap_unlockPixels(env, srcBitmap);
return ret;
}

bool PreProcessImageData(const LiteMat &lite_mat_bgr, LiteMat *lite_norm_mat_ptr) {
bool ret = false;
LiteMat lite_mat_resize;
LiteMat &lite_norm_mat_cut = *lite_norm_mat_ptr;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
if (!ret) {
MS_PRINT("ResizeBilinear error");
return false;
}
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0 / 255.0);
if (!ret) {
MS_PRINT("ConvertTo error");
return false;
}
LiteMat lite_mat_cut;
ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
if (!ret) {
MS_PRINT("Crop error");
return false;
}
float means[3] = {0.485, 0.456, 0.406};
float vars[3] = {1.0 / 0.229, 1.0 / 0.224, 1.0 / 0.225};
SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, vars);
return true;
}


/**
* The Java layer reads the model into MappedByteBuffer or ByteBuffer to load the model.
@@ -170,9 +158,9 @@ ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_ma
extern "C"
JNIEXPORT jlong JNICALL
Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_loadModel(JNIEnv *env,
jobject thiz,
jobject model_buffer,
jint num_thread) {
jobject thiz,
jobject model_buffer,
jint num_thread) {
if (nullptr == model_buffer) {
MS_PRINT("error, buffer is nullptr!");
return (jlong) nullptr;
@@ -220,16 +208,23 @@ Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_loadModel(JNI
*/
extern "C" JNIEXPORT jstring JNICALL
Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_runNet(JNIEnv *env, jclass type,
jlong netEnv,
jobject srcBitmap) {
cv::Mat matImageSrc;
BitmapToMat(env, srcBitmap, &matImageSrc);
cv::Mat matImgPreprocessed = PreProcessImageData(matImageSrc);
jlong netEnv,
jobject srcBitmap) {
LiteMat lite_mat_bgr, lite_norm_mat_cut;

if (!BitmapToLiteMat(env, srcBitmap, &lite_mat_bgr)) {
MS_PRINT("BitmapToLiteMat error");
return NULL;
}
if (!PreProcessImageData(lite_mat_bgr, &lite_norm_mat_cut)) {
MS_PRINT("PreProcessImageData error");
return NULL;
}

ImgDims inputDims;
inputDims.channel = matImgPreprocessed.channels();
inputDims.width = matImgPreprocessed.cols;
inputDims.height = matImgPreprocessed.rows;
inputDims.channel = lite_norm_mat_cut.channel_;
inputDims.width = lite_norm_mat_cut.width_;
inputDims.height = lite_norm_mat_cut.height_;

// Get the mindsore inference environment which created in loadModel().
void **labelEnv = reinterpret_cast<void **>(netEnv);
@@ -253,17 +248,10 @@ Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_runNet(JNIEnv
}
auto inTensor = msInputs.front();

// dataHWC is the tensor format.
float *dataHWC = new float[inputDims.channel * inputDims.width * inputDims.height];
float *ptrTmp = reinterpret_cast<float *>(matImgPreprocessed.data);
for (int i = 0; i < inputDims.channel * inputDims.width * inputDims.height; ++i) {
dataHWC[i] = ptrTmp[i];
}

float *dataHWC = reinterpret_cast<float *>(lite_norm_mat_cut.data_ptr_);
// Copy dataHWC to the model input tensor.
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
delete[] (dataHWC);

// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
@@ -277,7 +265,12 @@ Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_runNet(JNIEnv
* Get the mindspore inference results.
* Return the map of output node name and MindSpore Lite MSTensor.
*/
auto msOutputs = mSession->GetOutputMapByNode();
auto names = mSession->GetOutputTensorNames();
std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs;
for (const auto &name : names) {
auto temp_dat = mSession->GetOutputByTensorName(name);
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
}

std::string resultStr = ProcessRunnetResult(MSNetWork::RET_CATEGORY_SUM,
MSNetWork::labels_name_map, msOutputs);
@@ -288,8 +281,8 @@ Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_runNet(JNIEnv

extern "C" JNIEXPORT jboolean JNICALL
Java_com_mindspore_himindsporedemo_gallery_classify_TrackingMobile_unloadModel(JNIEnv *env,
jclass type,
jlong netEnv) {
jclass type,
jlong netEnv) {
MS_PRINT("MindSpore release net.");
void **labelEnv = reinterpret_cast<void **>(netEnv);
if (labelEnv == nullptr) {


Loading…
Cancel
Save