|
|
|
@@ -0,0 +1,210 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""ut for model serialize(save/load)""" |
|
|
|
import os |
|
|
|
import stat |
|
|
|
import time |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import context |
|
|
|
from mindspore.common.parameter import Parameter |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.train.serialization import export |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
|
|
|
|
def is_enable_onnxruntime(): |
|
|
|
val = os.getenv("ENABLE_ONNXRUNTIME", "False") |
|
|
|
if val in ('ON', 'on', 'TRUE', 'True', 'true'): |
|
|
|
return True |
|
|
|
return False |
|
|
|
|
|
|
|
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime") |
|
|
|
|
|
|
|
|
|
|
|
def setup_module(): |
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
def teardown_module(): |
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
for filename in os.listdir(cur_dir): |
|
|
|
if filename.find('ms_output_') == 0 and filename.find('.pb') > 0: |
|
|
|
# delete temp files generated by run ut |
|
|
|
os.chmod(filename, stat.S_IWRITE) |
|
|
|
os.remove(filename) |
|
|
|
|
|
|
|
|
|
|
|
class BatchNormTester(nn.Cell): |
|
|
|
"used to test exporting network in training mode in onnx format" |
|
|
|
|
|
|
|
def __init__(self, num_features): |
|
|
|
super(BatchNormTester, self).__init__() |
|
|
|
self.bn = nn.BatchNorm2d(num_features) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
return self.bn(x) |
|
|
|
|
|
|
|
|
|
|
|
def test_batchnorm_train_onnx_export(): |
|
|
|
"test onnx export interface does not modify trainable flag of a network" |
|
|
|
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) |
|
|
|
net = BatchNormTester(3) |
|
|
|
net.set_train() |
|
|
|
if not net.training: |
|
|
|
raise ValueError('netowrk is not in training mode') |
|
|
|
onnx_file = 'batch_norm.onnx' |
|
|
|
export(net, input, file_name=onnx_file, file_format='ONNX') |
|
|
|
|
|
|
|
if not net.training: |
|
|
|
raise ValueError('netowrk is not in training mode') |
|
|
|
# check existence of exported onnx file and delete it |
|
|
|
assert os.path.exists(onnx_file) |
|
|
|
os.chmod(onnx_file, stat.S_IWRITE) |
|
|
|
os.remove(onnx_file) |
|
|
|
|
|
|
|
class LeNet5(nn.Cell): |
|
|
|
"""LeNet5 definition""" |
|
|
|
|
|
|
|
def __init__(self): |
|
|
|
super(LeNet5, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') |
|
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') |
|
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120) |
|
|
|
self.fc2 = nn.Dense(120, 84) |
|
|
|
self.fc3 = nn.Dense(84, 10) |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.flatten = P.Flatten() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.max_pool2d(self.relu(self.conv1(x))) |
|
|
|
x = self.max_pool2d(self.relu(self.conv2(x))) |
|
|
|
x = self.flatten(x) |
|
|
|
x = self.relu(self.fc1(x)) |
|
|
|
x = self.relu(self.fc2(x)) |
|
|
|
x = self.fc3(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class DefinedNet(nn.Cell): |
|
|
|
"""simple Net definition with maxpoolwithargmax.""" |
|
|
|
|
|
|
|
def __init__(self, num_classes=10): |
|
|
|
super(DefinedNet, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros") |
|
|
|
self.bn1 = nn.BatchNorm2d(64) |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2) |
|
|
|
self.flatten = nn.Flatten() |
|
|
|
self.fc = nn.Dense(int(56 * 56 * 64), num_classes) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.bn1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x, argmax = self.maxpool(x) |
|
|
|
x = self.flatten(x) |
|
|
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class DepthwiseConv2dAndReLU6(nn.Cell): |
|
|
|
"Net for testing DepthwiseConv2d and ReLU6" |
|
|
|
|
|
|
|
def __init__(self, input_channel, kernel_size): |
|
|
|
super(DepthwiseConv2dAndReLU6, self).__init__() |
|
|
|
weight_shape = [1, input_channel, kernel_size, kernel_size] |
|
|
|
from mindspore.common.initializer import initializer |
|
|
|
self.weight = Parameter(initializer('ones', weight_shape), name='weight') |
|
|
|
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size)) |
|
|
|
self.relu6 = nn.ReLU6() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.depthwise_conv(x, self.weight) |
|
|
|
x = self.relu6(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
# generate mindspore Tensor by shape and numpy datatype |
|
|
|
def gen_tensor(shape, dtype=np.float32): |
|
|
|
return Tensor(np.ones(shape).astype(dtype)) |
|
|
|
|
|
|
|
|
|
|
|
# ut configs in triple: (ut_name, network, network-input) |
|
|
|
net_cfgs = [ |
|
|
|
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])), |
|
|
|
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])), |
|
|
|
('depthwiseconv_relu6', DepthwiseConv2dAndReLU6(3, kernel_size=3), gen_tensor([1, 3, 32, 32])), |
|
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
def get_id(cfg): |
|
|
|
return list(map(lambda x: x[0], net_cfgs)) |
|
|
|
|
|
|
|
|
|
|
|
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut |
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs)) |
|
|
|
def test_onnx_export(name, net, inp): |
|
|
|
onnx_file = name + ".onnx" |
|
|
|
export(net, inp, file_name=onnx_file, file_format='ONNX') |
|
|
|
|
|
|
|
# check existence of exported onnx file and delete it |
|
|
|
assert os.path.exists(onnx_file) |
|
|
|
os.chmod(onnx_file, stat.S_IWRITE) |
|
|
|
os.remove(onnx_file) |
|
|
|
|
|
|
|
|
|
|
|
@run_on_onnxruntime |
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs)) |
|
|
|
def test_onnx_export_load_run(name, net, inp): |
|
|
|
onnx_file = name + ".onnx" |
|
|
|
export(net, inp, file_name=onnx_file, file_format='ONNX') |
|
|
|
|
|
|
|
import onnx |
|
|
|
import onnxruntime as ort |
|
|
|
|
|
|
|
print('--------------------- onnx load ---------------------') |
|
|
|
# Load the ONNX model |
|
|
|
model = onnx.load(onnx_file) |
|
|
|
# Check that the IR is well formed |
|
|
|
onnx.checker.check_model(model) |
|
|
|
# Print a human readable representation of the graph |
|
|
|
g = onnx.helper.printable_graph(model.graph) |
|
|
|
print(g) |
|
|
|
|
|
|
|
print('------------------ onnxruntime run ------------------') |
|
|
|
ort_session = ort.InferenceSession(onnx_file) |
|
|
|
input_map = {'x': inp.asnumpy()} |
|
|
|
# provide only input x to run model |
|
|
|
outputs = ort_session.run(None, input_map) |
|
|
|
print(outputs[0]) |
|
|
|
# overwrite default weight to run model |
|
|
|
for item in net.trainable_params(): |
|
|
|
default_value = item.default_input.asnumpy() |
|
|
|
input_map[item.name] = np.ones(default_value.shape, dtype=default_value.dtype) |
|
|
|
outputs = ort_session.run(None, input_map) |
|
|
|
print(outputs[0]) |
|
|
|
|
|
|
|
# check existence of exported onnx file and delete it |
|
|
|
assert os.path.exists(onnx_file) |
|
|
|
os.chmod(onnx_file, stat.S_IWRITE) |
|
|
|
os.remove(onnx_file) |
|
|
|
|