Merge pull request !4068 from yangzhenzhang/add-concat-optags/v0.7.0-beta
| @@ -199,6 +199,8 @@ class SoftmaxCost : public OperatorCost { | |||
| using SoftmaxCostPtr = std::shared_ptr<SoftmaxCost>; | |||
| using TileCost = SoftmaxCost; | |||
| using TileCostPtr = std::shared_ptr<TileCost>; | |||
| using ConcatCost = TileCost; | |||
| using ConcatCostPtr = std::shared_ptr<ConcatCost>; | |||
| class TmpIdentityCost : public OperatorCost { | |||
| public: | |||
| @@ -136,6 +136,7 @@ REGISTER(EmbeddingLookupInfo); | |||
| REGISTER(TileInfo); | |||
| REGISTER(StridedSliceInfo); | |||
| REGISTER(DropoutInfo); | |||
| REGISTER(ConcatInfo); | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -24,7 +24,6 @@ | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| const std::set<std::string> BLACK_LIST = {TUPLE_GETITEM, | |||
| MAKE_TUPLE, | |||
| J, | |||
| LIST_GETITEM, | |||
| ARRAY_GETITEM, | |||
| @@ -0,0 +1,268 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "frontend/parallel/ops_info/concat_info.h" | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "frontend/parallel/device_matrix.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| #include "frontend/parallel/tensor_layout/tensor_redistribution.h" | |||
| #include "pipeline/jit/resource.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| Status ConcatInfo::GetAttrs() { | |||
| int axis = 0; | |||
| auto axis_iter = attrs_.find(AXIS); | |||
| if (axis_iter != attrs_.end()) { | |||
| MS_EXCEPTION_IF_NULL(axis_iter->second); | |||
| if (axis_iter->second->isa<Int32Imm>()) { | |||
| axis = axis_iter->second->cast<Int32ImmPtr>()->value(); | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": The value of axis is not int"; | |||
| return FAILED; | |||
| } | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": Can not find the axis attr"; | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| int dim = SizeToInt(inputs_shape_[0].size()); | |||
| if (axis < 0) { | |||
| axis = axis + dim; | |||
| } | |||
| axis_ = SizeToInt(axis); | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| MS_EXCEPTION_IF_NULL(strategy); | |||
| if (CheckStrategyValue(strategy, inputs_shape_, is_auto_parallel_) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy"; | |||
| return FAILED; | |||
| } | |||
| std::vector<Dimensions> stra = strategy->GetInputDim(); | |||
| if (stra.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The strategy is empty"; | |||
| return FAILED; | |||
| } | |||
| if (stra.size() != inputs_shape_.size()) { | |||
| MS_LOG(ERROR) << name_ << ": The size of strategy must be equal to the size of inputs shape"; | |||
| return FAILED; | |||
| } | |||
| for (size_t i = 0; i < stra.size(); ++i) { | |||
| auto strategy_ele = stra[i]; | |||
| auto input_shape_ele = inputs_shape_[i]; | |||
| if (strategy_ele.size() != input_shape_ele.size()) { | |||
| MS_LOG(ERROR) << name_ << ": The size of strategy element must be equal to the size of input shape"; | |||
| return FAILED; | |||
| } | |||
| if (axis_ >= strategy_ele.size()) { | |||
| MS_LOG(ERROR) << name_ << ": The axis is out of range, the axis is " << axis_; | |||
| return FAILED; | |||
| } | |||
| if (strategy_ele[axis_] != 1) { | |||
| MS_LOG(ERROR) << name_ << ": The axis can not be split"; | |||
| return FAILED; | |||
| } | |||
| for (size_t j = 0; j < strategy_ele.size(); ++j) { | |||
| if (strategy_ele[j] != stra[0][j]) { | |||
| MS_LOG(ERROR) << name_ << ": The strategy of each input tensor must be equal"; | |||
| return FAILED; | |||
| } | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::InferDevMatrixShape() { | |||
| MS_EXCEPTION_IF_NULL(strategy_); | |||
| std::vector<Dimensions> stra = strategy_->GetInputDim(); | |||
| if (stra.empty()) { | |||
| MS_LOG(ERROR) << name_ << "The strategy is empty"; | |||
| return FAILED; | |||
| } | |||
| dev_matrix_shape_ = stra[0]; | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::InferTensorMap() { | |||
| TensorMap tensor_map; | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << "The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| // cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices. | |||
| int32_t size = SizeToInt(inputs_shape_[0].size()); | |||
| for (int i = 0; i < size; ++i) { | |||
| tensor_map.push_back(size - i - 1); | |||
| } | |||
| for (size_t i = 0; i < inputs_shape_.size(); ++i) { | |||
| inputs_tensor_map_.push_back(tensor_map); | |||
| } | |||
| outputs_tensor_map_.push_back(tensor_map); | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::InferMirrorOps() { | |||
| mirror_ops_.clear(); | |||
| if (inputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_tensor_map = inputs_tensor_map_[0]; | |||
| std::vector<Group> group; | |||
| if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Create group for input failed."; | |||
| return FAILED; | |||
| } | |||
| if (group.empty()) { | |||
| MS_LOG(INFO) << name_ << ": The mirror group is empty."; | |||
| return SUCCESS; | |||
| } | |||
| OperatorVector input_op; | |||
| input_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum()); | |||
| for (size_t i = 0; i < inputs_shape_.size(); ++i) { | |||
| mirror_ops_.push_back(input_op); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::InferTensorInfo() { | |||
| if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid args"; | |||
| return FAILED; | |||
| } | |||
| TensorLayout input_layout, output_layout; | |||
| for (size_t i = 0; i < inputs_shape_.size(); ++i) { | |||
| // infer tensor layout | |||
| if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo input_tensor_info(input_layout); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| } | |||
| if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo output_tensor_info(output_layout); | |||
| outputs_tensor_info_.push_back(output_tensor_info); | |||
| return SUCCESS; | |||
| } | |||
| void ConcatInfo::ReComputeBatchSplitFlagList() { | |||
| for (size_t i = 0; i < inputs_shape_.size(); i++) { | |||
| split_flag_list_[i] = true; | |||
| } | |||
| } | |||
| Status ConcatInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { | |||
| if (SetCostUnderStrategyBase(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Set cost under strategy failed."; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::GenerateStrategies(int32_t stage_id) { | |||
| if (InferAttrs() != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer attrs failed"; | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_split; | |||
| for (size_t i = 0; i < inputs_shape_[0].size(); ++i) { | |||
| if (i == axis_) { | |||
| input_split.push_back(0); | |||
| } else { | |||
| input_split.push_back(1); | |||
| } | |||
| } | |||
| Shapes splittable_inputs; | |||
| for (size_t i = 0; i < inputs_shape_.size(); ++i) { | |||
| splittable_inputs.push_back(input_split); | |||
| } | |||
| std::vector<StrategyPtr> sp_vector; | |||
| is_auto_parallel_ = true; | |||
| if (GenerateStrategiesWithBroadcast(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| size_t success = 0; | |||
| for (auto &sp : sp_vector) { | |||
| PrintStrategy(sp); | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy."; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::Init(const StrategyPtr &strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init success."; | |||
| return SUCCESS; | |||
| } | |||
| Status ConcatInfo::InitForCostModel(const StrategyPtr &strategy) { | |||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init for cost model failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init for cost model success."; | |||
| return SUCCESS; | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,62 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_CONCAT_INFO_H_ | |||
| #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_CONCAT_INFO_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include "ir/value.h" | |||
| #include "frontend/parallel/auto_parallel/operator_costmodel.h" | |||
| #include "frontend/parallel/ops_info/operator_info.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| class ConcatInfo : public OperatorInfo { | |||
| public: | |||
| ConcatInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ConcatCost>(false)) {} | |||
| ~ConcatInfo() override = default; | |||
| Status Init(const StrategyPtr &strategy) override; | |||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||
| Status GenerateStrategies(int32_t) override; | |||
| Status SetCostUnderStrategy(const StrategyPtr &) override; | |||
| void ReComputeBatchSplitFlagList() override; | |||
| protected: | |||
| Status GetAttrs() override; | |||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||
| Status InferMirrorOps() override; | |||
| Status InferForwardCommunication() override { return SUCCESS; } | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferTensorMap() override; | |||
| private: | |||
| size_t axis_ = 0; | |||
| }; | |||
| using ConcatInfoPtr = std::shared_ptr<ConcatInfo>; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_CONCAT_INFO_H_ | |||
| @@ -39,5 +39,6 @@ | |||
| #include "frontend/parallel/ops_info/gather_v2_p_info.h" | |||
| #include "frontend/parallel/ops_info/tile_info.h" | |||
| #include "frontend/parallel/ops_info/strided_slice_info.h" | |||
| #include "frontend/parallel/ops_info/concat_info.h" | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | |||
| @@ -118,6 +118,9 @@ bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) { | |||
| std::vector<bool> ExtractInputParameterByNode(const CNodePtr &node) { | |||
| std::vector<bool> is_parameter; | |||
| std::vector<AnfNodePtr> node_inputs{node->inputs()}; | |||
| if ((node_inputs.size() == 2) && AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE)) { | |||
| node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs(); | |||
| } | |||
| for (size_t i = 1; i < node_inputs.size(); ++i) { | |||
| auto input = node_inputs[i]; | |||
| @@ -192,6 +195,10 @@ std::vector<size_t> ExtractInputTypeLengthByNode(const CNodePtr &node) { | |||
| std::vector<size_t> inputs_type_len; | |||
| std::vector<AnfNodePtr> node_inputs{node->inputs()}; | |||
| if ((node_inputs.size() == 2) && AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE)) { | |||
| node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs(); | |||
| } | |||
| // extract input element length | |||
| for (auto &input : node_inputs) { | |||
| if (IsValueNode<RefKey>(input)) { | |||
| @@ -255,7 +262,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| FLOORDIV, L2_NORMALIZE, TENSOR_ADD, MAXPOOL, MAXPOOLV2, VIRTUAL_DATA_SET, RELU, ONEHOT, DROPOUT_DO_MASK, | |||
| REDUCE_MAX, REDUCE_MIN, ARGMAXWITHVALUE, ARGMINWITHVALUE, REDUCE_SUM, CONV2D, FUSE_BATCH_NORM, POOLING, | |||
| MAX_POOL_WITH_ARGMAX, SIMPLE_MEAN, FLATTEN, BATCH_NORM, LAYER_NORM, BIAS_ADD, ASSIGN_SUB, COS, ACOS, EXP, | |||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, | |||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT, | |||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | |||
| SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS}; | |||
| // clang-format on | |||
| @@ -275,7 +282,7 @@ bool IsAutoParallelCareNode(const CNodePtr &cnode) { | |||
| return false; | |||
| } | |||
| bool bool_result = IsParallelCareNode(cnode) && !IsSplittableOperator(prim->name()); | |||
| if (bool_result) { | |||
| if (bool_result && (prim->name() != MAKE_TUPLE)) { | |||
| MS_LOG(EXCEPTION) << "Should implementing OperatorInfo for: " << prim->name(); | |||
| } else if (prim->name() == CAST) { | |||
| if (cnode->fullname_with_scope().find(OPTIMIZER_SUB_STRING) != std::string::npos) { | |||
| @@ -267,6 +267,33 @@ TensorLayout GetTensorInLayout(const CNodePtr &middle_node, const PrimitivePtr & | |||
| return tensorinfo_in.tensor_layout(); | |||
| } | |||
| bool AnfNodeIsPrimitive(const AnfNodePtr &anf_node, const std::string &prim_name) { | |||
| MS_EXCEPTION_IF_NULL(anf_node); | |||
| auto cnode = anf_node->cast<CNodePtr>(); | |||
| if ((cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0))) { | |||
| return false; | |||
| } | |||
| auto value_node = cnode->input(0)->cast<ValueNodePtr>(); | |||
| auto prim = GetValueNode<PrimitivePtr>(value_node); | |||
| MS_EXCEPTION_IF_NULL(prim); | |||
| if (prim->name() == prim_name) { | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| std::string GetPrimName(const CNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (!IsValueNode<Primitive>(node->input(0))) { | |||
| MS_LOG(EXCEPTION) << "The node is not a primitive"; | |||
| } | |||
| auto value_node = node->input(0)->cast<ValueNodePtr>(); | |||
| auto prim = GetValueNode<PrimitivePtr>(value_node); | |||
| MS_EXCEPTION_IF_NULL(prim); | |||
| return prim->name(); | |||
| } | |||
| OperatorInfoPtr GetDistributeOperator(const CNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (!IsParallelCareNode(node)) { | |||
| @@ -274,7 +301,7 @@ OperatorInfoPtr GetDistributeOperator(const CNodePtr &node) { | |||
| } | |||
| OperatorInfoPtr distribute_operator = node->user_data<OperatorInfo>(); | |||
| if (distribute_operator == nullptr) { | |||
| MS_LOG(EXCEPTION) << "GetDistributeOperator:distribute_operator is nullptr"; | |||
| MS_LOG(EXCEPTION) << "Distribute operator is nullptr, the prim is " << GetPrimName(node); | |||
| } | |||
| return distribute_operator; | |||
| } | |||
| @@ -423,6 +450,11 @@ void StepRedistribution(const CNodePtr &node, const OperatorInfoPtr &distribute_ | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| AnfNodeIndexSet node_set = manager->node_users()[node]; | |||
| CNodePtr insert_node_new; | |||
| if (AnfNodeIsPrimitive(node, MAKE_TUPLE)) { | |||
| MS_LOG(INFO) << "No need to insert redistribution op betweend make_tuple node and the next node"; | |||
| return; | |||
| } | |||
| if (IsValueNode<Primitive>(node->input(0))) { | |||
| auto current_value = node->input(0)->cast<ValueNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(current_value); | |||
| @@ -875,9 +907,15 @@ void InsertMirrorOps(const MirrorOps &mirror_ops, const CNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| FuncGraphManagerPtr manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| if ((node->inputs().size() == 2) && AnfNodeIsPrimitive(node->input(1), MAKE_TUPLE)) { | |||
| MS_LOG(INFO) << "The mirror for " << GetPrimName(node) << " has handle by make_tuple node"; | |||
| return; | |||
| } | |||
| if (mirror_ops.size() != node_size - 1) { | |||
| MS_LOG(EXCEPTION) << "Failure:Mirrorops's size is wrong! mirror_ops size is " << mirror_ops.size() | |||
| << ", node_size is " << node_size; | |||
| MS_LOG(EXCEPTION) << "Mirrorops's size is wrong! mirror_ops size is " << mirror_ops.size() << ", node_size is " | |||
| << node_size - 1; | |||
| } | |||
| for (size_t index = 1; index < node_size; ++index) { | |||
| OperatorVector backward_op = mirror_ops[index - 1]; | |||
| @@ -993,7 +1031,7 @@ OperatorInfoPtr OperatorInstance(const PrimitivePtr &prim, const PrimitiveAttrs | |||
| const std::vector<Shapes> &shape_list) { | |||
| MS_EXCEPTION_IF_NULL(prim); | |||
| OperatorInfoPtr operator_ = OperatorInstanceByName(prim->name(), attrs, shape_list); | |||
| if (operator_ == nullptr) { | |||
| if ((operator_ == nullptr) && (prim->name() != MAKE_TUPLE)) { | |||
| MS_LOG(INFO) << "Creat " << prim->name() << " failed, use batch parallel"; | |||
| operator_ = OperatorInstanceByName(BATCH_PARALLEL, attrs, shape_list); | |||
| MS_EXCEPTION_IF_NULL(operator_); | |||
| @@ -1177,7 +1215,12 @@ std::vector<Shapes> ExtractShape(const CNodePtr &node) { | |||
| continue; | |||
| } | |||
| if (input_shapes.size() != 1) { | |||
| MS_LOG(EXCEPTION) << "ExtractShape:Get input shape failed"; | |||
| if (inputs_size == 2) { // like concat | |||
| shape_inputs = input_shapes; | |||
| break; | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "ExtractShape: Get input shape failed"; | |||
| } | |||
| } | |||
| shape_inputs.push_back(input_shapes[0]); | |||
| } | |||
| @@ -1269,8 +1312,8 @@ void SetParallelShape(const AnfNodePtr ¶meter, const std::pair<AnfNodePtr, i | |||
| } | |||
| TensorInfo tensorinfo_in = distribute_operator->inputs_tensor_info()[IntToSize(res.second - 1)]; | |||
| Shape slice_shape = tensorinfo_in.slice_shape(); | |||
| MS_LOG(DEBUG) << "SetParallelShape slice_shape " << parameter->ToString() << " shape " | |||
| << MakeValue(slice_shape)->ToString(); | |||
| MS_LOG(INFO) << "SetParallelShape slice_shape " << parameter->ToString() << " shape " | |||
| << MakeValue(slice_shape)->ToString() << ", op name is " << distribute_operator->name(); | |||
| std::shared_ptr<abstract::BaseShape> parallel_shape = std::make_shared<abstract::Shape>(slice_shape); | |||
| MS_EXCEPTION_IF_NULL(parallel_shape); | |||
| // Don't modify it in-place as the pointer of this AbstractValue may used as cache key in StaticAnalysis. | |||
| @@ -1450,6 +1493,9 @@ void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes) { | |||
| SetVirtualDatasetStrategy(cnode); | |||
| ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>(); | |||
| PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node); | |||
| if (prim->name() == MAKE_TUPLE) { | |||
| continue; | |||
| } | |||
| auto attrs = prim->attrs(); | |||
| MS_LOG(INFO) << "extract information: node: " << node->ToString() << " prim " << prim->name(); | |||
| if (IsParallelCareNode(cnode)) { | |||
| @@ -2045,13 +2091,13 @@ void ParallelCommunication(const FuncGraphPtr &root, const std::vector<AnfNodePt | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (node->isa<CNode>()) { | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| if (!IsValueNode<Primitive>(cnode->input(0))) { | |||
| // the make_tuple is parallel care node, but it may have not operator info | |||
| if (!IsParallelCareNode(cnode) || !cnode->has_user_data<OperatorInfo>()) { | |||
| continue; | |||
| } | |||
| OperatorInfoPtr distribute_operator = GetDistributeOperator(cnode); | |||
| if (distribute_operator == nullptr) { | |||
| continue; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(distribute_operator); | |||
| // insert forward ops | |||
| InsertForwardOps(distribute_operator, cnode); | |||
| @@ -2074,13 +2120,12 @@ void ParallelCommunication(const FuncGraphPtr &root, const std::vector<AnfNodePt | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (node->isa<CNode>()) { | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| if (!IsValueNode<Primitive>(cnode->input(0))) { | |||
| if (!IsParallelCareNode(cnode) || !cnode->has_user_data<OperatorInfo>()) { | |||
| continue; | |||
| } | |||
| OperatorInfoPtr distribute_operator = GetDistributeOperator(cnode); | |||
| if (distribute_operator == nullptr) { | |||
| continue; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(distribute_operator); | |||
| // StepReplace | |||
| StepReplace(distribute_operator, cnode); | |||
| } | |||
| @@ -2330,6 +2375,44 @@ Status ParallelInit() { | |||
| return SUCCESS; | |||
| } | |||
| void HandleForwardMakeTuple(const std::vector<AnfNodePtr> &all_nodes) { | |||
| for (auto &node : all_nodes) { | |||
| if (!AnfNodeIsPrimitive(node, MAKE_TUPLE)) { | |||
| continue; | |||
| } | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| if (!cnode->in_forward_flag()) { | |||
| continue; | |||
| } | |||
| FuncGraphManagerPtr manager = cnode->func_graph()->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| auto make_tuple_user = manager->node_users()[cnode]; | |||
| if (make_tuple_user.size() != 1) { | |||
| MS_LOG(EXCEPTION) << "Now the make_tuple's user must be 1, but got " << make_tuple_user.size(); | |||
| } | |||
| CNodePtr make_tuple_next_cnode = make_tuple_user.pop().first->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(make_tuple_next_cnode); | |||
| std::string make_tuple_user_prim_name = GetPrimName(make_tuple_next_cnode); | |||
| if (!IsParallelCareNode(make_tuple_next_cnode)) { | |||
| MS_LOG(INFO) << "The make_tuple's user is " << make_tuple_user_prim_name << ", no need to set operator info"; | |||
| continue; | |||
| } | |||
| if (make_tuple_next_cnode->inputs().size() != 2) { | |||
| MS_LOG(EXCEPTION) << "Now the make_tuple's user only support 1 input, but got " | |||
| << make_tuple_next_cnode->inputs().size() - 1; | |||
| } | |||
| MS_LOG(INFO) << "Set the make_tuple's operator info, and the op name is " << make_tuple_user_prim_name; | |||
| OperatorInfoPtr op_info = GetDistributeOperator(make_tuple_next_cnode); | |||
| MS_EXCEPTION_IF_NULL(op_info); | |||
| cnode->set_user_data<OperatorInfo>(op_info); | |||
| } | |||
| } | |||
| bool StepParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &optimizer) { | |||
| MS_EXCEPTION_IF_NULL(root); | |||
| MS_EXCEPTION_IF_NULL(optimizer); | |||
| @@ -2383,6 +2466,9 @@ bool StepParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &optimizer) | |||
| ExtractInformation(all_nodes); | |||
| ReshapeInit(all_nodes); | |||
| } | |||
| HandleForwardMakeTuple(all_nodes); | |||
| // save strategy as checkpoint for multi-train | |||
| if (StrategyCheckpoint::GetInstance().SaveCheckPointOn()) { | |||
| CheckpointStrategy(root); | |||
| @@ -149,6 +149,8 @@ Status ParallelInit(); | |||
| std::vector<std::string> ExtractInputsTensorName(const CNodePtr &node); | |||
| std::set<FuncGraphPtr> ForwardGraph(const FuncGraphPtr &root); | |||
| bool AnfNodeIsPrimitive(const AnfNodePtr &anf_node, const std::string &prim_name); | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -222,9 +222,17 @@ def get_bprop_virtual_div_operator(self): | |||
| dtype = P.DType() | |||
| def bprop(x, out, dout): | |||
| if F.issubclass_(F.dtype(dout), mstype.bool_): | |||
| return (dout,) | |||
| dx = op(dout, cast(F.scalar_to_array(divisor), dtype(dout))) | |||
| if F.issubclass_(F.typeof(dout), mstype.tensor): | |||
| if F.issubclass_(F.dtype(dout), mstype.bool_): | |||
| return (dout,) | |||
| dx = op(dout, cast(F.scalar_to_array(divisor), dtype(dout))) | |||
| return (dx,) | |||
| dx = () | |||
| input_nums = F.tuple_len(dout) | |||
| for i in range(input_nums): | |||
| ele_grad = op(dout[i], cast(F.scalar_to_array(divisor), dtype(dout[i]))) | |||
| dx = dx + (ele_grad,) | |||
| return (dx,) | |||
| return bprop | |||
| @@ -0,0 +1,128 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore as ms | |||
| from mindspore import context, Tensor, Parameter | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import Cell, TrainOneStepCell, Momentum | |||
| from mindspore.ops import operations as P | |||
| class Net(Cell): | |||
| def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True): | |||
| super().__init__() | |||
| self.concat = P.Concat(axis=0).set_strategy(strategy1) | |||
| if is_parameter: | |||
| self.weight = Parameter(weight, "w1") | |||
| else: | |||
| self.weight = weight | |||
| self.mul = P.Mul().set_strategy(strategy2) | |||
| self.weight2 = Parameter(weight2, "w2") | |||
| def construct(self, x, b): | |||
| out = self.concat((self.weight, self.weight2)) | |||
| out = self.mul(x, out) | |||
| return out | |||
| class Net2(Cell): | |||
| def __init__(self, weight, strategy1=None, strategy2=None, axis=0): | |||
| super().__init__() | |||
| self.mul = P.Mul().set_strategy(strategy1) | |||
| self.concat = P.Concat(axis=axis).set_strategy(strategy2) | |||
| self.weight = Parameter(weight, "w") | |||
| def construct(self, x, b): | |||
| out = self.mul(x, b) | |||
| out = self.concat((out, self.weight)) | |||
| return out | |||
| _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||
| _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32) | |||
| _w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32) | |||
| _w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32) | |||
| _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||
| def compile_net(net): | |||
| context.set_context(save_graphs=True) | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| _executor.compile(train_net, _x, _b) | |||
| context.reset_auto_parallel_context() | |||
| def test_concat_parameter(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 4, 2), (1, 4, 2)) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) | |||
| compile_net(net) | |||
| def test_concat_parameter_no_full_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 2, 2), (1, 2, 2)) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) | |||
| compile_net(net) | |||
| def test_concat_tensor_and_parameter(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 2, 2), (1, 2, 2)) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False) | |||
| compile_net(net) | |||
| def test_concat_output(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((2, 2, 2), (2, 2, 2)) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net2(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_concat_output_no_full_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((2, 2, 2), (2, 2, 2)) | |||
| strategy2 = ((1, 2, 2), (1, 2, 2)) | |||
| net = Net2(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_concat_no_strategy(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((2, 2, 2), (2, 2, 2)) | |||
| strategy2 = None | |||
| net = Net2(_w3, strategy1, strategy2, axis=1) | |||
| compile_net(net) | |||
| def test_concat_auto_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net2(_w2) | |||
| compile_net(net) | |||
| def test_concat_auto_parallel2(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = None | |||
| strategy2 = None | |||
| net = Net2(_w3, strategy1, strategy2, axis=1) | |||
| compile_net(net) | |||