| @@ -41,8 +41,7 @@ class PowerTransform(Bijector): | |||||
| name (str): The name of the bijector. Default: 'PowerTransform'. | name (str): The name of the bijector. Default: 'PowerTransform'. | ||||
| param (dict): The parameters used to initialize the bijector. These parameters are only used when other | param (dict): The parameters used to initialize the bijector. These parameters are only used when other | ||||
| Bijectors inherit from powertransform to pass in parameters. In this case the derived Bijector may overwrite | Bijectors inherit from powertransform to pass in parameters. In this case the derived Bijector may overwrite | ||||
| the argument `param`. | |||||
| Default: None. | |||||
| the argument `param`. Default: None. | |||||
| Examples: | Examples: | ||||
| >>> # To initialize a PowerTransform bijector of power 0.5. | >>> # To initialize a PowerTransform bijector of power 0.5. | ||||
| @@ -42,8 +42,9 @@ class ConditionalVAE(Cell): | |||||
| num_classes(int): The number of classes. | num_classes(int): The number of classes. | ||||
| Inputs: | Inputs: | ||||
| - **input_x** (Tensor) - The input tensor is the same shape as the input of encoder, with the shape | |||||
| being :math:`(N, C, H, W)`. | |||||
| - **input_x** (Tensor) - The shape of input tensor is :math:`(N, C, H, W)`, which is the same as the input of | |||||
| encoder. | |||||
| - **input_y** (Tensor) - The tensor of the target data, the shape is :math:`(N,)`. | - **input_y** (Tensor) - The tensor of the target data, the shape is :math:`(N,)`. | ||||
| Outputs: | Outputs: | ||||
| @@ -39,8 +39,8 @@ class VAE(Cell): | |||||
| latent_size(int): The size of the latent space. | latent_size(int): The size of the latent space. | ||||
| Inputs: | Inputs: | ||||
| - **input** (Tensor) - The input tensor is the same shape as the input of encoder, the shape | |||||
| is :math:`(N, C, H, W)`. | |||||
| - **input** (Tensor) - The shape of input tensor is :math:`(N, C, H, W)`, which is the same as the input of | |||||
| encoder. | |||||
| Outputs: | Outputs: | ||||
| - **output** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)). | - **output** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)). | ||||