Browse Source

modify comments of API in mdp

tags/v1.0.0
bingyaweng 5 years ago
parent
commit
fc7e7c9044
3 changed files with 6 additions and 6 deletions
  1. +1
    -2
      mindspore/nn/probability/bijector/power_transform.py
  2. +3
    -2
      mindspore/nn/probability/dpn/vae/cvae.py
  3. +2
    -2
      mindspore/nn/probability/dpn/vae/vae.py

+ 1
- 2
mindspore/nn/probability/bijector/power_transform.py View File

@@ -41,8 +41,7 @@ class PowerTransform(Bijector):
name (str): The name of the bijector. Default: 'PowerTransform'. name (str): The name of the bijector. Default: 'PowerTransform'.
param (dict): The parameters used to initialize the bijector. These parameters are only used when other param (dict): The parameters used to initialize the bijector. These parameters are only used when other
Bijectors inherit from powertransform to pass in parameters. In this case the derived Bijector may overwrite Bijectors inherit from powertransform to pass in parameters. In this case the derived Bijector may overwrite
the argument `param`.
Default: None.
the argument `param`. Default: None.


Examples: Examples:
>>> # To initialize a PowerTransform bijector of power 0.5. >>> # To initialize a PowerTransform bijector of power 0.5.


+ 3
- 2
mindspore/nn/probability/dpn/vae/cvae.py View File

@@ -42,8 +42,9 @@ class ConditionalVAE(Cell):
num_classes(int): The number of classes. num_classes(int): The number of classes.
Inputs: Inputs:
- **input_x** (Tensor) - The input tensor is the same shape as the input of encoder, with the shape
being :math:`(N, C, H, W)`.
- **input_x** (Tensor) - The shape of input tensor is :math:`(N, C, H, W)`, which is the same as the input of
encoder.
- **input_y** (Tensor) - The tensor of the target data, the shape is :math:`(N,)`. - **input_y** (Tensor) - The tensor of the target data, the shape is :math:`(N,)`.
Outputs: Outputs:


+ 2
- 2
mindspore/nn/probability/dpn/vae/vae.py View File

@@ -39,8 +39,8 @@ class VAE(Cell):
latent_size(int): The size of the latent space. latent_size(int): The size of the latent space.
Inputs: Inputs:
- **input** (Tensor) - The input tensor is the same shape as the input of encoder, the shape
is :math:`(N, C, H, W)`.
- **input** (Tensor) - The shape of input tensor is :math:`(N, C, H, W)`, which is the same as the input of
encoder.
Outputs: Outputs:
- **output** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)). - **output** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).


Loading…
Cancel
Save