Merge pull request !5019 from yihuaijie/devtags/v1.0.0
| @@ -81,8 +81,6 @@ void ParallelContext::set_mirror_mean(bool mirror_mean) { mirror_mean_ = mirror_ | |||
| void ParallelContext::set_full_batch(bool full_batch) { full_batch_ = full_batch; } | |||
| void ParallelContext::set_has_initializer(bool has_initializer) { has_initializer_ = has_initializer; } | |||
| void ParallelContext::set_cast_before_mirror(bool cast_before_mirror) { cast_before_mirror_ = cast_before_mirror; } | |||
| void ParallelContext::set_loss_repeated_mean(bool loss_repeated_mean) { loss_repeated_mean_ = loss_repeated_mean; } | |||
| @@ -58,9 +58,6 @@ class ParallelContext { | |||
| void set_full_batch(bool full_batch); | |||
| bool full_batch() const { return full_batch_; } | |||
| void set_has_initializer(bool has_initializer); | |||
| bool has_initializer() const { return has_initializer_; } | |||
| void set_cast_before_mirror(bool cast_before_mirror); | |||
| bool cast_before_mirror() const { return cast_before_mirror_; } | |||
| @@ -115,7 +112,6 @@ class ParallelContext { | |||
| static std::shared_ptr<ParallelContext> inst_context_; | |||
| bool mirror_mean_; | |||
| bool full_batch_; | |||
| bool has_initializer_ = false; | |||
| bool cast_before_mirror_; | |||
| bool loss_repeated_mean_; | |||
| int32_t device_num_; | |||
| @@ -198,8 +198,6 @@ PYBIND11_MODULE(_c_expression, m) { | |||
| .def("get_strategy_ckpt_save_file", &ParallelContext::strategy_ckpt_save_file, "Get strategy checkpoint save file.") | |||
| .def("set_full_batch", &ParallelContext::set_full_batch, "Set whether load full batch on each device.") | |||
| .def("get_full_batch", &ParallelContext::full_batch, "Get whether load full batch on each device.") | |||
| .def("set_has_initializer", &ParallelContext::set_has_initializer, "Set whether any Initializer has been created.") | |||
| .def("get_has_initializer", &ParallelContext::has_initializer, "Get whether any Initializer has been created.") | |||
| .def("set_enable_parallel_optimizer", &ParallelContext::set_enable_parallel_optimizer, | |||
| "Set enable/disable parallel optimizer.") | |||
| .def("get_enable_parallel_optimizer", &ParallelContext::enable_parallel_optimizer, | |||
| @@ -24,7 +24,7 @@ from mindspore import log as logger | |||
| from .._c_expression import generate_key, Executor_, Tensor, MetaTensor, PynativeExecutor_ | |||
| from .._c_expression import verify_inputs_signature, init_exec_dataset, _set_dataset_mode_config, init_backend | |||
| from .tensor import Tensor as MsTensor | |||
| from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_tensor, _set_has_initializer | |||
| from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_tensor | |||
| # store ms_function class compiled pipeline cache | |||
| ms_compile_cache = {} | |||
| @@ -383,7 +383,6 @@ class _Executor: | |||
| Str, the full phase of the cell. | |||
| Bool, if the graph has been compiled before, return False, else return True. | |||
| """ | |||
| _set_has_initializer(False) | |||
| obj.check_names() | |||
| args_names, args_list = _generate_pip_args(obj, *args) | |||
| dic = dict(zip(args_names, args_list)) | |||
| @@ -24,7 +24,6 @@ from mindspore import log as logger | |||
| from . import dtype as mstype | |||
| from .tensor import Tensor | |||
| from .._c_expression import random_normal | |||
| from ..parallel._utils import _set_has_initializer | |||
| _INITIALIZER_ALIAS = dict() | |||
| @@ -43,7 +42,6 @@ class Initializer: | |||
| self._kwargs = kwargs | |||
| self.shape = None | |||
| self.dtype = None | |||
| _set_has_initializer(True) | |||
| def _initialize(self, *kwargs): | |||
| raise NotImplementedError('Must be overridden!') | |||
| @@ -90,6 +90,9 @@ class Parameter(MetaTensor): | |||
| input_class.__init__(obj, *class_init_args) | |||
| # it's better to make the Initializer a kind of metatensor. | |||
| obj.init_mode = None | |||
| obj.is_default_input_initializer = False | |||
| if isinstance(default_input, Initializer): | |||
| obj.is_default_input_initializer = True | |||
| if not isinstance(obj, Tensor): | |||
| obj.init_mode = default_input | |||
| return obj | |||
| @@ -118,6 +121,7 @@ class Parameter(MetaTensor): | |||
| self.is_param_ps = False | |||
| self._cast_type = None | |||
| self.init_in_server = False | |||
| self.is_in_parallel = _is_in_parallel_mode() | |||
| @staticmethod | |||
| def _get_base_class(input_class): | |||
| @@ -372,10 +376,17 @@ class Parameter(MetaTensor): | |||
| set_sliced (bool): True if the parameter is set sliced after initializing the data. | |||
| Default: False. | |||
| Raises: | |||
| RuntimeError: If it is from Initializer, and parallel mode has changed after the Initializer created. | |||
| Returns: | |||
| Parameter, the `Parameter` after initializing data. If current `Parameter` was already initialized before, | |||
| returns the same initialized `Parameter`. | |||
| """ | |||
| if self.is_default_input_initializer: | |||
| is_current_in_parallel = _is_in_parallel_mode() | |||
| if self.is_in_parallel != is_current_in_parallel: | |||
| raise RuntimeError("Must set or change parallel mode before any Initializer created.") | |||
| if self.init_mode is None: | |||
| return self | |||
| if layout is not None: | |||
| @@ -449,7 +449,7 @@ def set_auto_parallel_context(**kwargs): | |||
| next task, interface mindspore.context.reset_auto_parallel_context() needs to be called to reset | |||
| the configuration. | |||
| Setting or changing parallel modes must be called before any Initializer created, or RuntimeError | |||
| will be raised. | |||
| may be raised when compile network. | |||
| Args: | |||
| device_num (int): Available device number, the value must be in [1, 4096]. Default: 1. | |||
| @@ -491,7 +491,6 @@ def set_auto_parallel_context(**kwargs): | |||
| Raises: | |||
| ValueError: If input key is not attribute in auto parallel context. | |||
| RuntimeError: If there is any Initializer created before setting or changing parallel_mode. | |||
| Examples: | |||
| >>> context.set_auto_parallel_context(device_num=8) | |||
| @@ -176,12 +176,8 @@ class _AutoParallelContext: | |||
| Raises: | |||
| ValueError: If parallel mode is not supported. | |||
| RuntimeError: If there is any Initializer created before setting or changing parallel_mode. | |||
| """ | |||
| self.check_context_handle() | |||
| if self.get_has_initializer(): | |||
| self.set_has_initializer(False) | |||
| raise RuntimeError("Must set or change parallel mode before any Initializer created.") | |||
| ret = self._context_handle.set_parallel_mode(parallel_mode) | |||
| if ret is False: | |||
| raise ValueError("Parallel mode does not support {}".format(parallel_mode)) | |||
| @@ -253,21 +249,6 @@ class _AutoParallelContext: | |||
| self.check_context_handle() | |||
| return self._context_handle.get_full_batch() | |||
| def set_has_initializer(self, has_initializer): | |||
| """ | |||
| Set whether any Initializer has been created. | |||
| Args: | |||
| has_initializer (bool): True if a Initializer created. | |||
| """ | |||
| self.check_context_handle() | |||
| self._context_handle.set_has_initializer(has_initializer) | |||
| def get_has_initializer(self): | |||
| """Get whether any Initializer has been created.""" | |||
| self.check_context_handle() | |||
| return self._context_handle.get_has_initializer() | |||
| def set_strategy_ckpt_save_file(self, strategy_ckpt_save_file): | |||
| """ | |||
| Set strategy checkpoint save path. | |||
| @@ -562,7 +543,6 @@ def _set_auto_parallel_context(**kwargs): | |||
| Raises: | |||
| ValueError: If input key is not attribute in auto parallel context. | |||
| RuntimeError: If there is any Initializer created before setting or changing parallel_mode. | |||
| """ | |||
| for key, value in kwargs.items(): | |||
| if key not in _set_auto_parallel_context_func_map: | |||
| @@ -32,19 +32,6 @@ def _get_full_batch(): | |||
| """Get whether to use full_batch.""" | |||
| return auto_parallel_context().get_full_batch() | |||
| def _get_has_initializer(): | |||
| """Get whether any Initializer has been created.""" | |||
| return auto_parallel_context().get_has_initializer() | |||
| def _set_has_initializer(has_initializer): | |||
| """ | |||
| Set whether any Initializer has been created. | |||
| Args: | |||
| has_initializer (bool): True if a Initializer created. | |||
| """ | |||
| auto_parallel_context().set_has_initializer(has_initializer) | |||
| def _need_to_full(): | |||
| """Check whether to convert input to full shape or tensor.""" | |||
| @@ -24,7 +24,6 @@ import mindspore.nn as nn | |||
| from mindspore import Tensor, Model, ParallelMode | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.ops import operations as P | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| _current_dir = os.path.dirname(os.path.realpath(__file__)) + "/../test_data" | |||
| @@ -90,4 +89,3 @@ def test_lenet5_train_step_training_pynative(): | |||
| Model(network=network, loss_fn=loss_fn, optimizer=optimizer) | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| context.reset_auto_parallel_context() | |||
| _set_has_initializer(False) | |||
| @@ -21,7 +21,6 @@ from mindspore import context, Tensor, Parameter, ParameterTuple | |||
| from mindspore._checkparam import _check_str_by_regular | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| def test_parameter_init(): | |||
| dat = np.array([[1, 2, 3], [2, 3, 4]]) | |||
| @@ -191,7 +190,6 @@ def test_scalar_parameter_update(): | |||
| def test_parameter_lazy_init(): | |||
| _set_has_initializer(False) | |||
| # support lazy init in SEMI_AUTO_PARALLEL mode | |||
| context.reset_auto_parallel_context() | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8) | |||
| @@ -20,7 +20,6 @@ from mindspore import context | |||
| from mindspore.common.api import _executor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| @@ -61,7 +60,6 @@ def compile_net(net, x, y): | |||
| def test_add_relu_stride_slice(): | |||
| _set_has_initializer(False) | |||
| context.set_auto_parallel_context(device_num=8, global_rank=7) | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | |||
| @@ -75,7 +73,6 @@ def test_add_relu_stride_slice(): | |||
| def test_add_relu_all_gather(): | |||
| _set_has_initializer(False) | |||
| context.set_auto_parallel_context(device_num=8, global_rank=7) | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | |||
| @@ -23,7 +23,6 @@ from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.parallel import _cost_model_context as cost_model_context | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.train import Model, ParallelMode | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| from tests.dataset_mock import MindData | |||
| @@ -182,7 +181,6 @@ def test_allreduce_fusion_parameters(): | |||
| def test_allreduce_fusion1(): | |||
| _set_has_initializer(False) | |||
| cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1) | |||
| cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2) | |||
| cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5) | |||
| @@ -23,7 +23,7 @@ from mindspore.common.parameter import Parameter | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.ops import operations as P | |||
| from mindspore.parallel._utils import _reset_op_id, _set_has_initializer | |||
| from mindspore.parallel._utils import _reset_op_id | |||
| from mindspore.train import Model, ParallelMode | |||
| from tests.dataset_mock import MindData | |||
| @@ -90,7 +90,6 @@ def all_to_all_common(strategy1): | |||
| def test_all_to_all(): | |||
| _set_has_initializer(False) | |||
| strategy1 = ((8, 1),) | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||
| _reset_op_id() | |||
| @@ -20,7 +20,6 @@ from mindspore import Parameter, Tensor, context | |||
| from mindspore.common.api import _executor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| @@ -61,7 +60,6 @@ def test_matmul_sub(): | |||
| out = self.sub(out, b) | |||
| return out | |||
| _set_has_initializer(False) | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0) | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((2, 2), (2, 2)) | |||
| @@ -84,11 +84,23 @@ def test_wrong_order_set_parallel_mode_with_initializer(): | |||
| net = Net(strategy1, strategy2, weight) | |||
| exe = me._executor | |||
| x = Tensor(np.ones([32, 32]), dtype=ms.float32) | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| net.set_auto_parallel() | |||
| with pytest.raises(RuntimeError): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| net.set_auto_parallel() | |||
| exe.compile(net, x, auto_parallel_mode=True, phase='train') | |||
| def test_wrong_order_set_same_parallel_mode_with_initializer(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| weight = initializer("Normal", [64, 32], ms.float32) | |||
| strategy1 = ((2, 1), (4, 1)) | |||
| strategy2 = ((2, 4),) | |||
| net = Net(strategy1, strategy2, weight) | |||
| exe = me._executor | |||
| x = Tensor(np.ones([32, 32]), dtype=ms.float32) | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net.set_auto_parallel() | |||
| exe.compile(net, x, auto_parallel_mode=True, phase='train') | |||
| def test_wrong_order_set_parallel_mode_without_initializer(): | |||
| weight = Tensor(np.ones([64, 32]), ms.float32) | |||
| strategy1 = ((2, 1), (4, 1)) | |||
| @@ -18,7 +18,6 @@ from numpy import allclose | |||
| import mindspore.common.initializer as init | |||
| import mindspore.nn as nn | |||
| from mindspore import Parameter | |||
| from mindspore.parallel._utils import _set_has_initializer | |||
| parameter_shape = [16, 4] | |||
| @@ -47,7 +46,6 @@ def test_using_same_seed_for_initializer(): | |||
| np.random.seed(0) | |||
| net2 = ParameterNet() | |||
| net2.init_parameters_data() | |||
| _set_has_initializer(False) | |||
| for key in net1.parameters_dict(): | |||
| if key not in net2.parameters_dict(): | |||
| assert False | |||
| @@ -62,7 +60,6 @@ def test_using_diffserent_seed_for_initializer(): | |||
| np.random.seed(1) | |||
| net2 = ParameterNet() | |||
| net2.init_parameters_data() | |||
| _set_has_initializer(False) | |||
| for key in net1.parameters_dict(): | |||
| if key not in net2.parameters_dict(): | |||
| assert False | |||