|
|
@@ -0,0 +1,42 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
"""export checkpoint file into air models""" |
|
|
|
|
|
import argparse |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
import mindspore as ms |
|
|
|
|
|
from mindspore import Tensor |
|
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export |
|
|
|
|
|
|
|
|
|
|
|
from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 |
|
|
|
|
|
from src.config import config |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
parser = argparse.ArgumentParser(description='fasterrcnn_export') |
|
|
|
|
|
parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.') |
|
|
|
|
|
parser.add_argument('--output_file', type=str, default='', help='fasterrcnn output air name.') |
|
|
|
|
|
args_opt = parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
net = Faster_Rcnn_Resnet50(config=config) |
|
|
|
|
|
|
|
|
|
|
|
param_dict = load_checkpoint(args_opt.ckpt_file) |
|
|
|
|
|
load_param_into_net(net, param_dict) |
|
|
|
|
|
|
|
|
|
|
|
img = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 768, 1280]), ms.float16) |
|
|
|
|
|
img_shape = Tensor(np.random.uniform(0.0, 1.0, size=[768, 1280, 1]), ms.float16) |
|
|
|
|
|
gt_bboxes = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.float16) |
|
|
|
|
|
gt_label = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.int32) |
|
|
|
|
|
gt_num = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.bool) |
|
|
|
|
|
export(net, img, img_shape, gt_bboxes, gt_label, gt_num, file_name=args_opt.output_file, file_format="AIR") |