From: @caojian05 Reviewed-by: @wuxuejian,@oacjiewen,@liangchenghui Signed-off-by: @liangchenghuitags/v1.2.0-rc1
| @@ -300,7 +300,6 @@ Parameters for dataset (Training/Evaluation): | |||
| aug_rot properbility of image rotation during data augmenation: N, default is 0.0 | |||
| rotate maximum value of rotation angle during data augmentation: N, default is 0.0 | |||
| flip_prop properbility of image flip during data augmenation: N, default is 0.5 | |||
| color_aug whether use color augmentation: True | False, default is False | |||
| mean mean value of RGB image | |||
| std variance of RGB image | |||
| flip_idx the corresponding point index of keypoints when flip the image | |||
| @@ -45,7 +45,7 @@ parser.add_argument("--data_dir", type=str, default="", help="Dataset directory, | |||
| "and the relative path in anno_path") | |||
| parser.add_argument("--run_mode", type=str, default="test", help="test or validation, default is test.") | |||
| parser.add_argument("--visual_image", type=str, default="false", help="Visulize the ground truth and predicted image") | |||
| parser.add_argument("--enable_eval", type=str, default="true", help="Wether evaluate accuracy after prediction") | |||
| parser.add_argument("--enable_eval", type=str, default="true", help="Whether evaluate accuracy after prediction") | |||
| parser.add_argument("--save_result_dir", type=str, default="", help="The path to save the predict results") | |||
| args_opt = parser.parse_args() | |||
| @@ -15,7 +15,7 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "Please run the script as: " | |||
| echo "bash convert_dataset_to_mindrecord.sh /path/coco_dataset_dir /path/mindrecord_dataset_dir" | |||
| echo "==============================================================================================================" | |||
| @@ -28,4 +28,4 @@ PROJECT_DIR=$(cd "$(dirname "$0")" || exit; pwd) | |||
| python ${PROJECT_DIR}/../src/dataset.py \ | |||
| --coco_data_dir=$COCO_DIR \ | |||
| --mindrecord_dir=$MINDRECORD_DIR \ | |||
| --mindrecord_prefix="coco_hp.train.mind" > create_dataset.log 2>&1 & | |||
| --mindrecord_prefix="coco_hp.train.mind" > create_dataset.log 2>&1 & | |||
| @@ -15,7 +15,7 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "Please run the script as: " | |||
| echo "bash run_standalone_eval_ascend.sh DEVICE_ID RUN_MODE DATA_DIR LOAD_CHECKPOINT_PATH" | |||
| echo "for example of validation: bash run_standalone_eval_ascend.sh 0 val /path/coco_dataset /path/load_ckpt" | |||
| echo "for example of test: bash run_standalone_eval_ascend.sh 0 test /path/coco_dataset /path/load_ckpt" | |||
| @@ -15,7 +15,7 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "Please run the script as: " | |||
| echo "bash run_standalone_eval_cpu.sh RUN_MODE DATA_DIR LOAD_CHECKPOINT_PATH" | |||
| echo "for example of validation: bash run_standalone_eval_cpu.sh val /path/coco_dataset /path/load_ckpt" | |||
| echo "for example of test: bash run_standalone_eval_cpu.sh test /path/coco_dataset /path/load_ckpt" | |||
| @@ -15,7 +15,7 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "Please run the script as: " | |||
| echo "bash run_standalone_train_ascend.sh DEVICE_ID MINDRECORD_DIR LOAD_CHECKPOINT_PATH" | |||
| echo "for example: bash run_standalone_train_ascend.sh 0 /path/mindrecord_dataset /path/load_ckpt" | |||
| echo "if no ckpt, just run: bash run_standalone_train_ascend.sh 0 /path/mindrecord_dataset" | |||
| @@ -52,4 +52,4 @@ python ${PROJECT_DIR}/../train.py \ | |||
| --mindrecord_dir=$MINDRECORD_DIR \ | |||
| --mindrecord_prefix="coco_hp.train.mind" \ | |||
| --visual_image=false \ | |||
| --save_result_dir="" > training_log.txt 2>&1 & | |||
| --save_result_dir="" > training_log.txt 2>&1 & | |||
| @@ -15,7 +15,7 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "Please run the script as: " | |||
| echo "bash run_standalone_train_cpu.sh MINDRECORD_DIR LOAD_CHECKPOINT_PATH" | |||
| echo "for example: bash run_standalone_train_cpu.sh /path/mindrecord_dataset /path/load_ckpt" | |||
| echo "if no ckpt, just run: bash run_standalone_train_cpu.sh /path/mindrecord_dataset" | |||
| @@ -47,4 +47,4 @@ python ${PROJECT_DIR}/../train.py \ | |||
| --mindrecord_dir=$MINDRECORD_DIR \ | |||
| --mindrecord_prefix="coco_hp.train.mind" \ | |||
| --visual_image=false \ | |||
| --save_result_dir="" > training_log.txt 2>&1 & | |||
| --save_result_dir="" > training_log.txt 2>&1 & | |||
| @@ -276,7 +276,7 @@ class DLAUp(nn.Cell): | |||
| Upsampling of DLA network. | |||
| Args: | |||
| startp(int): The begining stage startup upsampling | |||
| startp(int): The beginning stage startup upsampling | |||
| channels(list int): The channels of each stage after upsampling | |||
| last_level(int): The ending stage of the final upsampling | |||
| @@ -32,7 +32,6 @@ dataset_config = edict({ | |||
| 'aug_rot': 0.0, | |||
| 'rotate': 0, | |||
| 'flip_prop': 0.5, | |||
| 'color_aug': False, | |||
| 'mean': np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32), | |||
| 'std': np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32), | |||
| 'flip_idx': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]], | |||
| @@ -26,7 +26,7 @@ import pycocotools.coco as coco | |||
| import mindspore.dataset as ds | |||
| from mindspore import log as logger | |||
| from mindspore.mindrecord import FileWriter | |||
| from src.image import color_aug, get_affine_transform, affine_transform | |||
| from src.image import get_affine_transform, affine_transform | |||
| from src.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian, draw_dense_reg | |||
| from src.visual import visual_image | |||
| @@ -37,7 +37,7 @@ cv2.setNumThreads(0) | |||
| class COCOHP(ds.Dataset): | |||
| """ | |||
| Encapsulation class of COCO person keypoints datast. | |||
| Initilize and preprocess of image for training and testing. | |||
| Initialize and preprocess of image for training and testing. | |||
| Args: | |||
| data_dir(str): Path of coco dataset. | |||
| @@ -67,7 +67,7 @@ class COCOHP(ds.Dataset): | |||
| os.makedirs(self.save_path) | |||
| def init(self, data_dir, keep_res=False): | |||
| """initailize additional info""" | |||
| """initialize additional info""" | |||
| logger.info('Initializing coco 2017 {} data.'.format(self.run_mode)) | |||
| if not os.path.isdir(data_dir): | |||
| raise RuntimeError("Invalid dataset path") | |||
| @@ -236,9 +236,8 @@ class COCOHP(ds.Dataset): | |||
| return eval_image, meta | |||
| def preprocess_fn(self, img, num_objects, keypoints, bboxes, category_id): | |||
| """image pre-process and augmentation""" | |||
| num_objs = min(num_objects, self.data_opt.max_objs) | |||
| def get_aug_param(self, img): | |||
| """get data augmentation parameters""" | |||
| img = cv2.imdecode(img, cv2.IMREAD_COLOR) | |||
| width = img.shape[1] | |||
| c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32) | |||
| @@ -266,21 +265,22 @@ class COCOHP(ds.Dataset): | |||
| flipped = True | |||
| img = img[:, ::-1, :] | |||
| c[0] = width - c[0] - 1 | |||
| return img, width, c, s, rot, flipped | |||
| def preprocess_fn(self, img, num_objects, keypoints, bboxes, category_id): | |||
| """image pre-process and augmentation""" | |||
| num_objs = min(num_objects, self.data_opt.max_objs) | |||
| img, width, c, s, rot, flipped = self.get_aug_param(img) | |||
| trans_input = get_affine_transform(c, s, rot, self.data_opt.input_res) | |||
| inp = cv2.warpAffine(img, trans_input, (self.data_opt.input_res[0], self.data_opt.input_res[1]), | |||
| flags=cv2.INTER_LINEAR) | |||
| if self.run_mode == "train" and self.data_opt.color_aug: | |||
| color_aug(self._data_rng, inp / 255., self.data_opt.eig_val, self.data_opt.eig_vec) | |||
| inp *= 255. | |||
| # caution: image normalization and transpose to nchw will both be done on device | |||
| # inp = (inp.astype(np.float32) / 255. - self.data_opt.mean) / self.data_opt.std | |||
| # inp = inp.transpose(2, 0, 1) | |||
| if self.data_opt.output_res[0] != self.data_opt.output_res[1]: | |||
| raise ValueError("Only square image was supported to used as output for convinient") | |||
| assert self.data_opt.output_res[0] == self.data_opt.output_res[1] | |||
| output_res = self.data_opt.output_res[0] | |||
| num_joints = self.data_opt.num_joints | |||
| max_objs = self.data_opt.max_objs | |||
| @@ -314,22 +314,20 @@ class COCOHP(ds.Dataset): | |||
| for e in self.data_opt.flip_idx: | |||
| pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy() | |||
| lt = [bbox[0], bbox[3]] | |||
| rb = [bbox[2], bbox[1]] | |||
| lt, rb = [bbox[0], bbox[3]], [bbox[2], bbox[1]] | |||
| bbox[:2] = affine_transform(bbox[:2], trans_output_rot) | |||
| bbox[2:] = affine_transform(bbox[2:], trans_output_rot) | |||
| if rot != 0: | |||
| lt = affine_transform(lt, trans_output_rot) | |||
| rb = affine_transform(rb, trans_output_rot) | |||
| bbox[0] = min(lt[0], rb[0], bbox[0], bbox[2]) | |||
| bbox[2] = max(lt[0], rb[0], bbox[0], bbox[2]) | |||
| bbox[1] = min(lt[1], rb[1], bbox[1], bbox[3]) | |||
| bbox[3] = max(lt[1], rb[1], bbox[1], bbox[3]) | |||
| for i in range(2): | |||
| bbox[i] = min(lt[i], rb[i], bbox[i], bbox[i+2]) | |||
| bbox[i+2] = max(lt[i], rb[i], bbox[i], bbox[i+2]) | |||
| bbox = np.clip(bbox, 0, output_res - 1) | |||
| h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] | |||
| if h <= 0 or w <= 0: | |||
| continue | |||
| radius = gaussian_radius((math.ceil(h), math.ceil(w))) | |||
| hp_radius = radius = gaussian_radius((math.ceil(h), math.ceil(w))) | |||
| ct = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) | |||
| ct_int = ct.astype(np.int32) | |||
| wh[k] = 1. * w, 1. * h | |||
| @@ -341,7 +339,6 @@ class COCOHP(ds.Dataset): | |||
| hm[cls_id, ct_int[1], ct_int[0]] = 0.9999 | |||
| reg_mask[k] = 0 | |||
| hp_radius = radius | |||
| for j in range(num_joints): | |||
| if pts[j, 2] > 0: | |||
| pts[j, :2] = affine_transform(pts[j, :2], trans_output_rot) | |||
| @@ -163,7 +163,7 @@ class DeformConv2d(nn.Cell): | |||
| stride (int): The distance of kernel moving. Default: 1. | |||
| padding (int): Implicit paddings size on both sides of the input. Default: 1. | |||
| has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. | |||
| modulation (bool): If True, modulated defomable convolution (Deformable ConvNets v2). Defaut: True. | |||
| modulation (bool): If True, modulated defomable convolution (Deformable ConvNets v2). Default: True. | |||
| Returns: | |||
| Tensor, detection of images(bboxes, score, keypoints and category id of each objects) | |||
| """ | |||
| @@ -62,7 +62,7 @@ class NMS(nn.Cell): | |||
| class GatherTopK(nn.Cell): | |||
| """ | |||
| Gather topk features through all channeles | |||
| Gather topk features through all channels | |||
| Args: None | |||
| @@ -107,7 +107,7 @@ class GatherTopKChannel(nn.Cell): | |||
| Args: None | |||
| Returns: | |||
| Tuple of Tensors, top_k scores, indexes, and the indexes in height and width direcction repectively. | |||
| Tuple of Tensors, top_k scores, indexes, and the indexes in height and width direcction respectively. | |||
| """ | |||
| def __init__(self): | |||
| super(GatherTopKChannel, self).__init__() | |||
| @@ -281,7 +281,7 @@ class FlipLROff(nn.Cell): | |||
| self.concat = ops.Concat(axis=1) | |||
| def construct(self, kps): | |||
| """flip and gather kps at specfied position""" | |||
| """flip and gather kps at specified position""" | |||
| # kps: 2b, 2J, h, w | |||
| kps_o, kps_f = self.half(kps) | |||
| # b, 2J, h, w | |||
| @@ -501,7 +501,7 @@ class LossCallBack(Callback): | |||
| def step_begin(self, run_context): | |||
| """ | |||
| Get begining time of each step | |||
| Get beginning time of each step | |||
| """ | |||
| self._begin_time = time.time() | |||
| @@ -575,7 +575,7 @@ class CenterNetMultiEpochsDecayLR(LearningRateSchedule): | |||
| Args: | |||
| learning_rate(float): Initial learning rate. | |||
| warmup_steps(int): Warmup steps. | |||
| multi_steps(list int): The steps coresponding to decay learning rate. | |||
| multi_steps(list int): The steps corresponding to decay learning rate. | |||
| steps_per_epoch(int): How many steps for each epoch. | |||
| factor(int): Learning rate decay factor. Default: 10. | |||
| @@ -612,7 +612,7 @@ class MultiEpochsDecayLR(LearningRateSchedule): | |||
| Args: | |||
| learning_rate(float): Initial learning rate. | |||
| multi_steps(list int): The steps coresponding to decay learning rate. | |||
| multi_steps(list int): The steps corresponding to decay learning rate. | |||
| steps_per_epoch(int): How many steps for each epoch. | |||
| factor(int): Learning rate decay factor. Default: 10. | |||