| @@ -0,0 +1,78 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/unique_cpu_kernel.h" | |||||
| #include "runtime/device/cpu/cpu_device_address.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| void UniqueCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| CheckParam(kernel_node); | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| n_ = input_shape[0]; | |||||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||||
| } | |||||
| bool UniqueCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| if (dtype_ == kNumberTypeInt32) { | |||||
| LaunchKernel<int>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat32) { | |||||
| LaunchKernel<float>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeInt64) { | |||||
| LaunchKernel<int64_t>(inputs, outputs); | |||||
| } | |||||
| return true; | |||||
| } | |||||
| template <typename T> | |||||
| void UniqueCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { | |||||
| auto x_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| auto y_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| auto idx_addr = reinterpret_cast<int *>(outputs[1]->addr); | |||||
| std::unordered_map<T, int> uniq; | |||||
| int n = SizeToInt(n_); | |||||
| uniq.reserve(n * 2); | |||||
| for (int i = 0, j = 0; i < n; ++i) { | |||||
| auto it = uniq.emplace(x_addr[i], j); | |||||
| idx_addr[i] = it.first->second; | |||||
| if (it.second) { | |||||
| ++j; | |||||
| } | |||||
| } | |||||
| for (const auto &it : uniq) { | |||||
| y_addr[it.second] = it.first; | |||||
| } | |||||
| } | |||||
| void UniqueCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| if (input_shape.size() != 1) { | |||||
| MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d."; | |||||
| } | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 1) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 1 input."; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 2) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output."; | |||||
| } | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,61 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_ | |||||
| #include <vector> | |||||
| #include <memory> | |||||
| #include <unordered_map> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class UniqueCPUKernel : public CPUKernel { | |||||
| public: | |||||
| UniqueCPUKernel() = default; | |||||
| ~UniqueCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| template <typename T> | |||||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| private: | |||||
| void CheckParam(const CNodePtr &kernel_node); | |||||
| size_t n_; | |||||
| TypeId dtype_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL( | |||||
| Unique, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||||
| UniqueCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32), | |||||
| UniqueCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| Unique, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32), | |||||
| UniqueCPUKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_ | |||||
| @@ -0,0 +1,47 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | |||||
| class Net(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| self.uniq = P.Unique() | |||||
| def construct(self, x): | |||||
| return self.uniq(x) | |||||
| def test_net(): | |||||
| x = Tensor(np.array([1, 2, 5, 2]), mstype.float32) | |||||
| uniq = Net() | |||||
| output = uniq(x) | |||||
| print("x:\n", x) | |||||
| print("y:\n", output[0]) | |||||
| print("idx:\n", output[1]) | |||||
| expect_y_result = [1., 2., 5.] | |||||
| expect_idx_result = [0, 1, 2, 1] | |||||
| assert (output[0].asnumpy() == expect_y_result).all() | |||||
| assert (output[1].asnumpy() == expect_idx_result).all() | |||||
| @@ -128,6 +128,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_ftrl_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_ftrl_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc" | |||||
| ) | ) | ||||
| if (CMAKE_SYSTEM_NAME MATCHES "Windows") | if (CMAKE_SYSTEM_NAME MATCHES "Windows") | ||||
| @@ -0,0 +1,76 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <vector> | |||||
| #include "common/common_test.h" | |||||
| #define private public | |||||
| #define protected public | |||||
| #include "backend/kernel_compiler/cpu/unique_cpu_kernel.h" | |||||
| #undef private | |||||
| #undef protected | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class UniqueCpuKernelTest : public UT::Common { | |||||
| public: | |||||
| UniqueCpuKernelTest() : unique_(std::make_shared<UniqueCPUKernel>()) {} | |||||
| void SetUp() override { | |||||
| unique_->n_ = 9; | |||||
| unique_->dtype_ = kNumberTypeFloat32; | |||||
| inputs_.clear(); | |||||
| workspace_.clear(); | |||||
| outputs_.clear(); | |||||
| } | |||||
| AddressPtr CreateKernelAddress(void *addr) { | |||||
| auto kernel_addr = std::make_shared<Address>(); | |||||
| kernel_addr->addr = addr; | |||||
| return kernel_addr; | |||||
| } | |||||
| void CreateInputAddress() { inputs_.push_back(CreateKernelAddress(x_.data())); } | |||||
| void CreateOutputAddress() { | |||||
| outputs_.push_back(CreateKernelAddress(y_.data())); | |||||
| outputs_.push_back(CreateKernelAddress(idx_.data())); | |||||
| } | |||||
| std::vector<float> x_; | |||||
| std::vector<float> y_; | |||||
| std::vector<int> idx_; | |||||
| std::vector<AddressPtr> inputs_; | |||||
| std::vector<AddressPtr> workspace_; | |||||
| std::vector<AddressPtr> outputs_; | |||||
| std::shared_ptr<UniqueCPUKernel> unique_; | |||||
| }; | |||||
| TEST_F(UniqueCpuKernelTest, compute_test) { | |||||
| x_ = {1, 1, 2, 4, 4, 4, 7, 8, 8}; | |||||
| y_ = {1, 1, 1, 1, 1}; | |||||
| idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1}; | |||||
| CreateInputAddress(); | |||||
| CreateOutputAddress(); | |||||
| unique_->Launch(inputs_, workspace_, outputs_); | |||||
| // check compute result | |||||
| std::vector<float> expect_y{1, 2, 4, 7, 8}; | |||||
| std::vector<int> expect_idx{0, 0, 1, 2, 2, 2, 3, 4, 4}; | |||||
| EXPECT_TRUE(y_ == expect_y); | |||||
| EXPECT_TRUE(idx_ == expect_idx); | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||