|
|
|
@@ -31,12 +31,13 @@ namespace mindspore { |
|
|
|
namespace device { |
|
|
|
namespace ascend { |
|
|
|
namespace { |
|
|
|
const float kWegihtBaseScore = 1; |
|
|
|
const float kFeatureMapBaseScore = 10; |
|
|
|
enum MatchCountPriority : int { |
|
|
|
MATCH_COUNT_PRIORITY_BEGIN = 0, |
|
|
|
MATCH_DTYPE_COUNT = MATCH_COUNT_PRIORITY_BEGIN, |
|
|
|
MATCH_FORMAT_COUNT, |
|
|
|
MATCH_SPECIAL_FORMAT_COUNT, |
|
|
|
MATCH_5D_FORMAT_COUNT, |
|
|
|
MATCH_OUTPUT_DTYPE_COUNT, |
|
|
|
MATCH_COUNT_PRIORITY_END |
|
|
|
}; |
|
|
|
@@ -82,13 +83,6 @@ bool IsValidKernelInfo(const std::shared_ptr<CNode> &kernel_node, const kernel:: |
|
|
|
} |
|
|
|
return true; |
|
|
|
}; |
|
|
|
if (AnfAlgo::GetCNodeName(kernel_node) == "Adam") { |
|
|
|
auto input_num = AnfAlgo::GetInputTensorNum(kernel_node); |
|
|
|
if (AnfAlgo::GetPrevNodeOutputFormat(kernel_node, input_num - 1) != |
|
|
|
kernel_build_info.GetInputFormat(input_num - 1)) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
} |
|
|
|
if (AnfAlgo::GetCNodeName(kernel_node) == prim::kPrimCast->name()) { |
|
|
|
return AnfAlgo::GetOutputInferDataType(kernel_node, 0) == kernel_build_info.GetOutputDeviceType(0) && |
|
|
|
AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0) == kernel_build_info.GetInputDeviceType(0); |
|
|
|
@@ -112,21 +106,7 @@ bool MatchInferOutputDataType(const CNodePtr &cnode, const kernel::KernelBuildIn |
|
|
|
MS_EXCEPTION_IF_NULL(cnode); |
|
|
|
// Check input data type |
|
|
|
for (size_t input_index = 0; input_index < kernel_build_info.GetInputNum(); ++input_index) { |
|
|
|
AnfNodePtr cur_input = AnfAlgo::GetInputNode(cnode, input_index); |
|
|
|
MS_EXCEPTION_IF_NULL(cur_input); |
|
|
|
TypeId input_origin_type; |
|
|
|
if (cur_input->isa<Parameter>() && AnfAlgo::IsParameterWeight(cur_input->cast<ParameterPtr>())) { |
|
|
|
// weight |
|
|
|
input_origin_type = AnfAlgo::GetOutputDeviceDataType(cur_input, 0); |
|
|
|
} else if (cur_input->isa<ValueNode>()) { |
|
|
|
input_origin_type = AnfAlgo::GetOutputDeviceDataType(cur_input, 0); |
|
|
|
} else { |
|
|
|
// feature map |
|
|
|
input_origin_type = AnfAlgo::GetPrevNodeOutputInferDataType(cnode, input_index); |
|
|
|
} |
|
|
|
if (input_origin_type == kTypeUnknown) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
TypeId input_origin_type = AnfAlgo::GetPrevNodeOutputInferDataType(cnode, input_index); |
|
|
|
if (kernel_build_info.GetInputDeviceType(input_index) != input_origin_type) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
@@ -140,6 +120,29 @@ bool MatchInferOutputDataType(const CNodePtr &cnode, const kernel::KernelBuildIn |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
string GetPriorityMatchFormat(const CNodePtr &cnode) { |
|
|
|
string priority_matched_format = kOpFormat_NC1HWC0; |
|
|
|
bool is_init = false; |
|
|
|
bool need_change_nd = false; |
|
|
|
for (size_t index = 0; index < AnfAlgo::GetInputTensorNum(cnode); ++index) { |
|
|
|
auto pre_output_format = AnfAlgo::GetPrevNodeOutputFormat(cnode, index); |
|
|
|
if (AnfAlgo::IsFeatureMapInput(cnode, index) && |
|
|
|
kNeedTransFormatSet.find(pre_output_format) != kNeedTransFormatSet.end()) { |
|
|
|
priority_matched_format = !is_init ? priority_matched_format : pre_output_format; |
|
|
|
is_init = true; |
|
|
|
} |
|
|
|
// feature map has two or more special format; |
|
|
|
if (priority_matched_format != pre_output_format && pre_output_format != kOpFormat_DEFAULT) { |
|
|
|
priority_matched_format = kOpFormat_DEFAULT; |
|
|
|
} |
|
|
|
auto input_shape_size = AnfAlgo::GetPrevNodeOutputInferShape(cnode, index).size(); |
|
|
|
need_change_nd = (need_change_nd || (input_shape_size != 4 && input_shape_size > 1)); |
|
|
|
} |
|
|
|
if (need_change_nd) { |
|
|
|
priority_matched_format = kOpFormat_DEFAULT; |
|
|
|
} |
|
|
|
return priority_matched_format; |
|
|
|
} |
|
|
|
/** |
|
|
|
* compare two vector by priority, select a better vector, like compare two num, first compare highest num location, |
|
|
|
* if equal then next num location |
|
|
|
@@ -172,34 +175,18 @@ void UpdateCurMatchCounts(const kernel::KernelBuildInfo &kernel_build_info, cons |
|
|
|
if (cur_kernelinfo_match_counts->size() < MATCH_COUNT_PRIORITY_END) { |
|
|
|
MS_LOG(EXCEPTION) << "Out of range cur_kernelinfo_match_counts " << MATCH_COUNT_PRIORITY_END; |
|
|
|
} |
|
|
|
auto pri_match_format = GetPriorityMatchFormat(kernel_node); |
|
|
|
for (size_t input_index = 0; input_index < AnfAlgo::GetInputTensorNum(kernel_node); ++input_index) { |
|
|
|
AnfNodePtr input_anf_node = AnfAlgo::GetInputNode(kernel_node, input_index); |
|
|
|
MS_EXCEPTION_IF_NULL(input_anf_node); |
|
|
|
// if a input parameter is a weight with default format, the input shouldn't participate the judge |
|
|
|
if (input_anf_node->isa<Parameter>()) { |
|
|
|
auto para = input_anf_node->cast<ParameterPtr>(); |
|
|
|
if (AnfAlgo::IsParameterWeight(para) && AnfAlgo::GetOutputDeviceDataType(para, 0) == kTypeUnknown) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
auto base_score = AnfAlgo::IsFeatureMapInput(kernel_node, input_index) ? kFeatureMapBaseScore : kWegihtBaseScore; |
|
|
|
if (kernel_build_info.GetInputFormat(input_index) == AnfAlgo::GetPrevNodeOutputFormat(kernel_node, input_index)) { |
|
|
|
if (AnfAlgo::IsFeatureMapInput(kernel_node, input_index) && |
|
|
|
kNeedTransFormatSet.find(kernel_build_info.GetInputFormat(input_index)) != kNeedTransFormatSet.end()) { |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_SPECIAL_FORMAT_COUNT]++; |
|
|
|
} |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_FORMAT_COUNT]++; |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_FORMAT_COUNT] += base_score; |
|
|
|
} |
|
|
|
if (kernel_build_info.GetInputDeviceType(input_index) == |
|
|
|
AnfAlgo::GetPrevNodeOutputDeviceDataType(kernel_node, input_index)) { |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_DTYPE_COUNT]++; |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_DTYPE_COUNT] += base_score; |
|
|
|
} |
|
|
|
if (kernel_build_info.GetInputFormat(input_index) == kOpFormat_NC1HWC0) { |
|
|
|
// input is from a feature map & this input's shape is not 4d |
|
|
|
if (AnfAlgo::IsFeatureMapInput(kernel_node, input_index) && |
|
|
|
AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, input_index).size() != kShape4dDims) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_5D_FORMAT_COUNT]++; |
|
|
|
if (kernel_build_info.GetInputFormat(input_index) == pri_match_format) { |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_SPECIAL_FORMAT_COUNT] += base_score; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
@@ -207,7 +194,7 @@ void UpdateCurMatchCounts(const kernel::KernelBuildInfo &kernel_build_info, cons |
|
|
|
// cal count of same output dtype between abstract and kernel info |
|
|
|
if (kernel_build_info.GetOutputDeviceType(output_index) == |
|
|
|
AnfAlgo::GetOutputInferDataType(kernel_node, output_index)) { |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_OUTPUT_DTYPE_COUNT]++; |
|
|
|
(*cur_kernelinfo_match_counts)[MATCH_OUTPUT_DTYPE_COUNT] += 1; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -517,7 +504,7 @@ void SelectKernelInfo(const CNodePtr &kernel_node) { |
|
|
|
std::vector<std::shared_ptr<kernel::KernelBuildInfo>> kernel_info_list; |
|
|
|
MS_EXCEPTION_IF_NULL(kernel_node); |
|
|
|
kernel::KernelQuery(kernel_node, &kernel_info_list); |
|
|
|
std::vector<int> most_match_counts = {-1, -1, -1, -1, -1}; |
|
|
|
std::vector<int> most_match_counts = {-1, -1, -1, -1}; |
|
|
|
int selected_index = -1; |
|
|
|
auto context_ptr = MsContext::GetInstance(); |
|
|
|
MS_EXCEPTION_IF_NULL(context_ptr); |
|
|
|
@@ -527,7 +514,7 @@ void SelectKernelInfo(const CNodePtr &kernel_node) { |
|
|
|
std::vector<int> node_mix_precision_datatype_index; |
|
|
|
std::vector<TypeId> node_mix_precision_datatype; |
|
|
|
for (size_t info_index = 0; info_index < kernel_info_list.size(); ++info_index) { |
|
|
|
std::vector<int> cur_kernel_info_match_counts = {0, 0, 0, 0, 0}; |
|
|
|
std::vector<int> cur_kernel_info_match_counts = {0, 0, 0, 0}; |
|
|
|
auto kernel_build_info = *(kernel_info_list[info_index]); |
|
|
|
if (!IsValidKernelInfo(kernel_node, kernel_build_info)) { |
|
|
|
continue; |
|
|
|
|