| @@ -95,6 +95,34 @@ __global__ void RsqrtKernel(half *input, half *output, size_t count) { | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void SinKernel(T *input, T *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| output[i] = sin(input[i]); | |||
| } | |||
| return; | |||
| } | |||
| template <> | |||
| __global__ void SinKernel(half *input, half *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| output[i] = hsin(input[i]); | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void CosKernel(T *input, T *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| output[i] = cos(input[i]); | |||
| } | |||
| return; | |||
| } | |||
| template <> | |||
| __global__ void CosKernel(half *input, half *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| output[i] = hcos(input[i]); | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void ZeroslikeKernel(T *output, size_t count) { | |||
| T zero = 0.0; | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| @@ -167,6 +195,16 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| SinKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count); | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| CosKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count); | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count); | |||
| return; | |||
| @@ -193,6 +231,8 @@ template void Negative<float>(float *input, float *output, size_t count, cudaStr | |||
| template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Sin<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Cos<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Abs<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream); | |||
| @@ -203,6 +243,8 @@ template void Negative<half>(half *input, half *output, size_t count, cudaStream | |||
| template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Sin<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Cos<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream); | |||
| template void Abs<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream); | |||
| @@ -33,6 +33,10 @@ void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void Sin(T *input, T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void Cos(T *input, T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void Abs(T *input, T *output, size_t count, cudaStream_t cuda_stream); | |||
| @@ -46,6 +46,14 @@ MS_REG_GPU_KERNEL_ONE(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOut | |||
| UnaryOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Rsqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| UnaryOpGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| UnaryOpGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnaryOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Abs, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| @@ -36,6 +36,8 @@ enum UnaryOptype { | |||
| UNARY_OP_SQUARE, | |||
| UNARY_OP_SQRT, | |||
| UNARY_OP_RSQRT, | |||
| UNARY_OP_SIN, | |||
| UNARY_OP_COS, | |||
| UNARY_OP_ABS, | |||
| UNARY_OP_FLOOR, | |||
| UNARY_OP_INVALID_TYPE = 255 | |||
| @@ -48,6 +50,8 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY | |||
| {"Square", UNARY_OP_SQUARE}, | |||
| {"Sqrt", UNARY_OP_SQRT}, | |||
| {"Rsqrt", UNARY_OP_RSQRT}, | |||
| {"Sin", UNARY_OP_SIN}, | |||
| {"Cos", UNARY_OP_COS}, | |||
| {"Abs", UNARY_OP_ABS}, | |||
| {"Floor", UNARY_OP_FLOOR}}; | |||
| template <typename T> | |||
| @@ -100,6 +104,14 @@ class UnaryOpGpuKernel : public GpuKernel { | |||
| Rsqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_SIN: { | |||
| Sin(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_COS: { | |||
| Cos(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case UNARY_OP_ZEROSLIKE: { | |||
| Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_cos(): | |||
| x_np = np.random.rand(2, 3, 4, 4).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| output_ms = P.Cos()(Tensor(x_np)) | |||
| output_np = np.cos(x_np) | |||
| assert np.allclose(output_ms.asnumpy(), output_np) | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_sin(): | |||
| x_np = np.random.rand(2, 3, 4, 4).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| output_ms = P.Sin()(Tensor(x_np)) | |||
| output_np = np.sin(x_np) | |||
| assert np.allclose(output_ms.asnumpy(), output_np) | |||