Merge pull request !317 from huanghui/derelu_fusion_passtags/v0.2.0-alpha
| @@ -0,0 +1,105 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fusion/derelu_fusion.h" | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "ir/primitive.h" | |||
| #include "utils/utils.h" | |||
| #include "pipeline/static_analysis/abstract_value.h" | |||
| #include "pre_activate/common/helper.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| const size_t kReluV2OutputNum = 2; | |||
| CNodePtr GetRelu(const CNodePtr &relu_grad) { | |||
| MS_EXCEPTION_IF_NULL(relu_grad); | |||
| if (relu_grad->size() != kReluGradInputNum) { | |||
| MS_LOG_EXCEPTION << "ReluGrad has wrong input size " << relu_grad->size(); | |||
| } | |||
| auto relu_anf = relu_grad->input(2); | |||
| MS_EXCEPTION_IF_NULL(relu_anf); | |||
| return relu_anf->cast<CNodePtr>(); | |||
| } | |||
| CNodePtr CreateReluV2(const FuncGraphPtr &graph, const CNodePtr &relu) { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(relu); | |||
| if (relu->size() != kReluInputNum) { | |||
| MS_LOG_EXCEPTION << "Relu has wrong input size " << relu->size(); | |||
| } | |||
| auto prim = std::make_shared<Primitive>(kReluV2OpName); | |||
| std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu->input(1)}; | |||
| auto new_node = graph->NewCNode(inputs); | |||
| MS_EXCEPTION_IF_NULL(new_node); | |||
| new_node->set_scope(relu->scope()); | |||
| // ReluV2's 2rd output is mask whose data type is uint8 and value is 0 or 1, so shape is an empty vector | |||
| TypeId mask_dtype = kNumberTypeUInt8; | |||
| std::vector<size_t> mask_shape; | |||
| auto types = {AnfAlgo::GetOutputInferDataType(relu, 0), mask_dtype}; | |||
| auto shapes = {AnfAlgo::GetOutputInferShape(relu, 0), mask_shape}; | |||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, new_node.get()); | |||
| return new_node; | |||
| } | |||
| CNodePtr CreateReluGradV2(const FuncGraphPtr &graph, const CNodePtr &relu_grad, const AnfNodePtr &second_input) { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(relu_grad); | |||
| MS_EXCEPTION_IF_NULL(second_input); | |||
| auto prim = std::make_shared<Primitive>(kReluGradV2OpName); | |||
| std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu_grad->input(1), second_input}; | |||
| auto new_node = graph->NewCNode(inputs); | |||
| MS_EXCEPTION_IF_NULL(new_node); | |||
| new_node->set_scope(relu_grad->scope()); | |||
| new_node->set_abstract(relu_grad->abstract()); | |||
| return new_node; | |||
| } | |||
| } // namespace | |||
| const BaseRef DereluFusion::DefinePattern() const { | |||
| VarPtr i0 = std::make_shared<Var>(); | |||
| VarPtr i1 = std::make_shared<Var>(); | |||
| VectorRef relu({prim::kPrimRelu, i1}); | |||
| VectorRef relu_grad({prim::kPrimReluGrad, i0, relu}); | |||
| return relu_grad; | |||
| } | |||
| const AnfNodePtr DereluFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| auto relu_grad = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(relu_grad); | |||
| auto relu = GetRelu(relu_grad); | |||
| MS_EXCEPTION_IF_NULL(relu); | |||
| auto relu_v2 = CreateReluV2(graph, relu); | |||
| std::vector<AnfNodePtr> relu_v2_node_outputs; | |||
| CreateMultipleOutputsOfAnfNode(graph, relu_v2, kReluV2OutputNum, &relu_v2_node_outputs); | |||
| auto relu_grad_v2 = CreateReluGradV2(graph, relu_grad, relu_v2_node_outputs[1]); | |||
| auto manage = graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manage); | |||
| manage->Replace(relu, relu_v2_node_outputs[0]); | |||
| return relu_grad_v2; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,33 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_ | |||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_ | |||
| #include <memory> | |||
| #include "pre_activate/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class DereluFusion : public PatternProcessPass { | |||
| public: | |||
| explicit DereluFusion(bool multigraph = true) : PatternProcessPass("derelu_fusion", multigraph) {} | |||
| ~DereluFusion() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_ | |||
| @@ -29,6 +29,7 @@ constexpr size_t kTransOpInputNum = 2; | |||
| constexpr size_t kCastInputNum = 2; | |||
| constexpr size_t kDependInputNum = 3; | |||
| constexpr size_t kReluInputNum = 2; | |||
| constexpr size_t kReluGradInputNum = 3; | |||
| constexpr size_t kAddInputNum = 3; | |||
| constexpr size_t kAddNInputNum = 3; | |||
| constexpr size_t kTupleGetitemInputNum = 3; | |||
| @@ -116,6 +116,8 @@ constexpr auto kBiasAddOpName = "BiasAdd"; | |||
| constexpr auto kConfusionMulGradOpName = "ConfusionMulGrad"; | |||
| constexpr auto kSendOpName = "Send"; | |||
| constexpr auto kRecvOpName = "Recv"; | |||
| constexpr auto kReluV2OpName = "ReluV2"; | |||
| constexpr auto kReluGradV2OpName = "ReluGradV2"; | |||
| // attr key name | |||
| constexpr auto kAttrInputNames = "input_names"; | |||
| @@ -0,0 +1,54 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/backend_common_test.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| #include "pre_activate/common/optimizer.h" | |||
| #include "pre_activate/ascend/ir_fusion/derelu_fusion.h" | |||
| #include "debug/anf_ir_dump.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class TestHWOptimizeDereluFusion : public BackendCommon { | |||
| public: | |||
| TestHWOptimizeDereluFusion() : get_py_fun_("gtest_input.pre_activate.derelu_fusion", true) {} | |||
| ~TestHWOptimizeDereluFusion() override = default; | |||
| UT::PyFuncGraphFetcher get_py_fun_; | |||
| }; | |||
| TEST_F(TestHWOptimizeDereluFusion, test_fusion) { | |||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_derelu_fusion", "before"); | |||
| EXPECT_NE(g, nullptr); | |||
| std::vector<int> shp{1, 1, 1, 1}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp); | |||
| AbstractBasePtrList args_spec_list; | |||
| for (size_t i = 0; i < 2; ++i) { | |||
| args_spec_list.push_back(x_abstract); | |||
| } | |||
| auto fg = GetKernelGraph(g, args_spec_list); | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pm = std::make_shared<opt::PassManager>(); | |||
| pm->AddPass(std::make_shared<opt::DereluFusion>()); | |||
| optimizer->AddPassManager(pm); | |||
| FuncGraphPtr new_graph = optimizer->Optimize(fg); | |||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_derelu_fusion", "after"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import Primitive | |||
| relu = P.ReLU() | |||
| relu_grad = Primitive('ReluGrad') | |||
| relu_v2 = Primitive('ReluV2') | |||
| relu_grad_v2 = Primitive('ReluGradV2') | |||
| make_tuple = Primitive('make_tuple') | |||
| tuple_getitem = Primitive('tuple_getitem') | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_derelu_fusion(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(i0, i1): | |||
| relu_res = relu(i1) | |||
| res = relu_grad(i0, relu_res) | |||
| other = relu(relu_res) | |||
| res = make_tuple(res, other) | |||
| return res | |||
| @fns | |||
| def after(i0, i1): | |||
| relu_res = relu_v2(i1) | |||
| item0 = tuple_getitem(relu_res, 0) | |||
| item1 = tuple_getitem(relu_res, 1) | |||
| other = relu(item0) | |||
| res = relu_grad_v2(i0, item1) | |||
| res = make_tuple(res, other) | |||
| return make_tuple(res) | |||
| return fns[tag] | |||