| @@ -0,0 +1,131 @@ | |||
| # BERT Example | |||
| ## Description | |||
| This example implements pre-training, fine-tuning and evaluation of [BERT-base](https://github.com/google-research/bert)(the base version of BERT model) and [BERT-NEZHA](https://github.com/huawei-noah/Pretrained-Language-Model)(a Chinese pretrained language model developed by Huawei, which introduced a improvement of Functional Relative Positional Encoding as an effective positional encoding scheme). | |||
| ## Requirements | |||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| - Download the zhwiki dataset from <https://dumps.wikimedia.org/zhwiki> for pre-training. Extract and clean text in the dataset with [WikiExtractor](https://github.com/attardi/wiliextractor). Convert the dataset to TFRecord format and move the files to a specified path. | |||
| - Download the CLUE dataset from <https://www.cluebenchmarks.com> for fine-tuning and evaluation. | |||
| > Notes: | |||
| If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file. | |||
| ## Running the Example | |||
| ### Pre-Training | |||
| - Set options in `config.py`. Make sure the 'DATA_DIR'(path to the dataset) and 'SCHEMA_DIR'(path to the json schema file) are set to your own path. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#tfrecord) for more information about dataset and the json schema file. | |||
| - Run `run_pretrain.py` for pre-training of BERT-base and BERT-NEZHA model. | |||
| ``` bash | |||
| python run_pretrain.py --backend=ms | |||
| ``` | |||
| ### Fine-Tuning | |||
| - Set options in `finetune_config.py`. Make sure the 'data_file', 'schema_file' and 'ckpt_file' are set to your own path, set the 'pre_training_ckpt' to save the checkpoint files generated. | |||
| - Run `finetune.py` for fine-tuning of BERT-base and BERT-NEZHA model. | |||
| ```bash | |||
| python finetune.py --backend=ms | |||
| ``` | |||
| ### Evaluation | |||
| - Set options in `evaluation_config.py`. Make sure the 'data_file', 'schema_file' and 'finetune_ckpt' are set to your own path. | |||
| - Run `evaluation.py` for evaluation of BERT-base and BERT-NEZHA model. | |||
| ```bash | |||
| python evaluation.py --backend=ms | |||
| ``` | |||
| ## Usage | |||
| ### Pre-Training | |||
| ``` | |||
| usage: run_pretrain.py [--backend BACKEND] | |||
| optional parameters: | |||
| --backend, BACKEND MindSpore backend: ms | |||
| ``` | |||
| ## Options and Parameters | |||
| It contains of parameters of BERT model and options for training, which is set in file `config.py`, `finetune_config.py` and `evaluation_config.py` respectively. | |||
| ### Options: | |||
| ``` | |||
| Pre-Training: | |||
| bert_network version of BERT model: base | large, default is base | |||
| epoch_size repeat counts of training: N, default is 40 | |||
| dataset_sink_mode use dataset sink mode or not: True | False, default is True | |||
| do_shuffle shuffle the dataset or not: True | False, default is True | |||
| do_train_with_lossscale use lossscale or not: True | False, default is True | |||
| loss_scale_value initial value of loss scale: N, default is 2^32 | |||
| scale_factor factor used to update loss scale: N, default is 2 | |||
| scale_window steps for once updatation of loss scale: N, default is 1000 | |||
| save_checkpoint_steps steps to save a checkpoint: N, default is 2000 | |||
| keep_checkpoint_max numbers to save checkpoint: N, default is 1 | |||
| init_ckpt checkpoint file to load: PATH, default is "" | |||
| data_dir dataset file to load: PATH, default is "/your/path/cn-wiki-128" | |||
| schema_dir dataset schema file to load: PATH, default is "your/path/datasetSchema.json" | |||
| optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb" | |||
| Fine-Tuning: | |||
| task task type: NER | XNLI | LCQMC | SENTI | |||
| data_file dataset file to load: PATH, default is "/your/path/cn-wiki-128" | |||
| schema_file dataset schema file to load: PATH, default is "/your/path/datasetSchema.json" | |||
| epoch_num repeat counts of training: N, default is 40 | |||
| ckpt_prefix prefix used to save checkpoint files: PREFIX, default is "bert" | |||
| ckpt_dir path to save checkpoint files: PATH, default is None | |||
| pre_training_ckpt checkpoint file to load: PATH, default is "/your/path/pre_training.ckpt" | |||
| optimizer optimizer used in the network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb" | |||
| Evaluation: | |||
| task task type: NER | XNLI | LCQMC | SENTI | |||
| data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord" | |||
| schema_file dataset schema file to load: PATH, default is "/your/path/schema.json" | |||
| finetune_ckpt checkpoint file to load: PATH, default is "/your/path/your.ckpt" | |||
| ``` | |||
| ### Parameters: | |||
| ``` | |||
| Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation): | |||
| batch_size batch size of input dataset: N, default is 16 | |||
| seq_length length of input sequence: N, default is 128 | |||
| vocab_size size of each embedding vector: N, default is 21136 | |||
| hidden_size size of bert encoder layers: N, default is 768 | |||
| num_hidden_layers number of hidden layers: N, default is 12 | |||
| num_attention_heads number of attention heads: N, default is 12 | |||
| intermediate_size size of intermediate layer: N, default is 3072 | |||
| hidden_act activation function used: ACTIVATION, default is "gelu" | |||
| hidden_dropout_prob dropout probability for BertOutput: Q, default is 0.1 | |||
| attention_probs_dropout_prob dropout probability for BertAttention: Q, default is 0.1 | |||
| max_position_embeddings maximum length of sequences: N, default is 512 | |||
| type_vocab_size size of token type vocab: N, default is 16 | |||
| initializer_range initialization value of TruncatedNormal: Q, default is 0.02 | |||
| use_relative_positions use relative positions or not: True | False, default is False | |||
| input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True | |||
| token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True | |||
| dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32 | |||
| compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16 | |||
| Parameters for optimizer: | |||
| AdamWeightDecayDynamicLR: | |||
| decay_steps steps of the learning rate decay: N, default is 12276*3 | |||
| learning_rate value of learning rate: Q, default is 1e-5 | |||
| end_learning_rate value of end learning rate: Q, default is 0.0 | |||
| power power: Q, default is 10.0 | |||
| warmup_steps steps of the learning rate warm up: N, default is 2100 | |||
| weight_decay weight decay: Q, default is 1e-5 | |||
| eps term added to the denominator to improve numerical stability: Q, default is 1e-6 | |||
| Lamb: | |||
| decay_steps steps of the learning rate decay: N, default is 12276*3 | |||
| learning_rate value of learning rate: Q, default is 1e-5 | |||
| end_learning_rate value of end learning rate: Q, default is 0.0 | |||
| power power: Q, default is 5.0 | |||
| warmup_steps steps of the learning rate warm up: N, default is 2100 | |||
| weight_decay weight decay: Q, default is 1e-5 | |||
| decay_filter function to determine whether to apply weight decay on parameters: FUNCTION, default is lambda x: False | |||
| Momentum: | |||
| learning_rate value of learning rate: Q, default is 2e-5 | |||
| momentum momentum for the moving average: Q, default is 0.9 | |||
| ``` | |||