| @@ -0,0 +1,446 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ test_pynative_hook_grad """ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.nn as nn | |||
| import mindspore.ops.operations as P | |||
| from mindspore.nn import Cell | |||
| from mindspore import context | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.ops.composite import GradOperation | |||
| from mindspore.common import ParameterTuple | |||
| def setup_module(): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| class MetaFactory: | |||
| def __init__(self): | |||
| self.device_target = context.get_context('device_target') | |||
| self.rank_size = None | |||
| self.device_id = None | |||
| self.global_rank_id = None | |||
| class HookBase(MetaFactory): | |||
| def __init__(self): | |||
| super().__init__() | |||
| MetaFactory.__init__(self) | |||
| self.grad_input_list = [] | |||
| self.grad_output_list = [] | |||
| def ms_record_hook(self, cell_id, grad_input, grad_output): | |||
| for grad in grad_input: | |||
| self.grad_input_list.append(grad) | |||
| for grad in grad_output: | |||
| self.grad_output_list.append(grad) | |||
| def ms_change_grad_double_hook(self, cell_id, grad_input, grad_output): | |||
| y = Tensor(np.array([2.0]).astype(np.float32)) | |||
| mul = P.Mul() | |||
| grad = grad_output[0] | |||
| output = mul(grad, y) | |||
| return output | |||
| class FinalNet(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.conv = nn.Conv2d(1, 3, 3) | |||
| self.relu = nn.ReLU() | |||
| def construct(self, x, flag): | |||
| if flag: | |||
| x = self.conv(x) | |||
| else: | |||
| x = self.relu(x) | |||
| return self.relu(x) | |||
| class _Grad(Cell): | |||
| def __init__(self, grad, network, wrt_params=False, real_inputs_count=None): | |||
| super().__init__() | |||
| self.network = network | |||
| self.grad = grad | |||
| self.sens_param = self.grad.sens_param | |||
| self.wrt_params = wrt_params | |||
| self.real_inputs_count = real_inputs_count | |||
| if self.wrt_params: | |||
| self.params = ParameterTuple(self.network.trainable_params()) | |||
| def construct(self, *inputs): | |||
| if self.wrt_params: | |||
| if self.real_inputs_count is None or self.sens_param is False: | |||
| return self.grad(self.network, self.params)(*inputs) | |||
| real_inputs = inputs[:self.real_inputs_count] | |||
| sense_param_inputs = inputs[self.real_inputs_count:] | |||
| return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs) | |||
| if self.real_inputs_count is None or self.sens_param is False: | |||
| return self.grad(self.network)(*inputs) | |||
| real_inputs = inputs[:self.real_inputs_count] | |||
| sense_param_inputs = inputs[self.real_inputs_count:] | |||
| return self.grad(self.network)(*real_inputs, sense_param_inputs) | |||
| class GradOfAllInputs(_Grad): | |||
| def __init__(self, network, sens_param=True, real_inputs_count=None): | |||
| super().__init__(grad=GradOperation(get_all=True, sens_param=sens_param), | |||
| network=network, real_inputs_count=real_inputs_count) | |||
| class MsMul4(nn.Cell): | |||
| def construct(self, input_mul): | |||
| out = input_mul * 2 | |||
| return out | |||
| class MsMul(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.mul = P.Mul() | |||
| def construct(self, x, y): | |||
| x = self.mul(x, y) | |||
| return x | |||
| class MsAdd4(nn.Cell): | |||
| def construct(self, input_add): | |||
| out = input_add + 4 | |||
| return out | |||
| class MsOneInputNet(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.add = MsAdd4() | |||
| self.mul = MsMul4() | |||
| self.relu = nn.ReLU() | |||
| def construct(self, x): | |||
| x = self.add(x) | |||
| x = self.mul(x) | |||
| out = self.relu(x) | |||
| return out | |||
| class MsMultiInputNet(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.mul1 = MsMul() | |||
| self.mul2 = MsMul4() | |||
| def construct(self, x, y): | |||
| a = self.mul1(x, y) | |||
| b = self.mul2(x) | |||
| output = self.mul1(a, b) | |||
| return output | |||
| class MsNetWithParameter(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.conv1 = nn.Conv2d(2, 4, kernel_size=(1, 1), has_bias=True, | |||
| weight_init=Tensor(np.ones([4, 2, 1, 1]).astype(np.float32)), | |||
| bias_init=Tensor(np.ones([4]).astype(np.float32))) | |||
| self.conv2 = nn.Conv2d(4, 8, kernel_size=(1, 1), has_bias=True, | |||
| weight_init=Tensor(np.ones([8, 4, 1, 1]).astype(np.float32)), | |||
| bias_init=Tensor(np.ones([8]).astype(np.float32))) | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| output = self.conv2(x) | |||
| return output | |||
| class MsNetWithCellinCell(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.net1 = MsOneInputNet() | |||
| self.mul = MsMul4() | |||
| def construct(self, x): | |||
| x = self.net1(x) | |||
| output = self.mul(x) | |||
| return output | |||
| class MsSingleOpNetWithBprop(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.op = nn.ReLU() | |||
| def construct(self, x): | |||
| return self.op(x) | |||
| def bprop(self, x, out, dout): | |||
| y = Tensor(np.array([5.0]).astype(np.float32)) | |||
| mul = P.Mul() | |||
| return mul(x, y) | |||
| class MsNetHasBpropInChild(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.add = MsAdd4() | |||
| self.bprop_net = MsSingleOpNetWithBprop() | |||
| def construct(self, x): | |||
| x = self.add(x) | |||
| return self.bprop_net(x) | |||
| class MsMultiOpNetWithBprop(nn.Cell, HookBase): | |||
| def __init__(self): | |||
| super().__init__() | |||
| HookBase.__init__(self) | |||
| self.mul = MsMul4() | |||
| self.relu = nn.ReLU() | |||
| def construct(self, x): | |||
| x = self.mul(x) | |||
| return self.relu(x) | |||
| def bprop(self, x, out, dout): | |||
| y = Tensor(np.array([5.0]).astype(np.float32)) | |||
| mul = P.Mul() | |||
| return mul(x, y) | |||
| def _count_unequal_element(data_expected, data_me, rtol, atol): | |||
| assert data_expected.shape == data_me.shape | |||
| total_count = len(data_expected.flatten()) | |||
| error = np.abs(data_expected - data_me) | |||
| greater = np.greater(error, atol + np.abs(data_me)*rtol) | |||
| loss_count = np.count_nonzero(greater) | |||
| assert (loss_count/total_count) < rtol,\ | |||
| "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".\ | |||
| format(data_expected[greater], data_me[greater], error[greater]) | |||
| def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): | |||
| if np.any(np.isnan(data_expected)): | |||
| assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan) | |||
| elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan): | |||
| _count_unequal_element(data_expected, data_me, rtol, atol) | |||
| else: | |||
| assert True | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_if_net_register_diff_hook_at_each_hook(): | |||
| input_np = np.ones([1, 1, 224, 224]).astype(np.float32) | |||
| ms_net = FinalNet() | |||
| ms_net.set_grad() | |||
| ms_net.conv.register_backward_hook(ms_net.ms_record_hook) | |||
| ms_net.relu.register_backward_hook(ms_net.ms_change_grad_double_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms, Tensor(1)) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| grad_net(input_ms, Tensor(1), out_ms) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_one_input_network_register_hook_at_outermost_cell_not_change_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsOneInputNet() | |||
| ms_net.set_grad() | |||
| ms_net.register_backward_hook(ms_net.ms_record_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input_ms, out_ms) | |||
| #input grad | |||
| input_torch_grad = np.array([[20, 20], [20, 20]]) | |||
| allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| #hook record grad | |||
| torch_net_grad_output = np.array([[10, 10], [10, 10]]) | |||
| torch_net_grad_input = np.array([[20, 20], [20, 20]]) | |||
| allclose_nparray(torch_net_grad_output, ms_net.grad_input_list[0].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_input, ms_net.grad_output_list[0].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_one_input_network_register_hook_to_all_cell_record_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsOneInputNet() | |||
| ms_net.set_grad() | |||
| ms_net.mul.register_backward_hook(ms_net.ms_record_hook) | |||
| ms_net.add.register_backward_hook(ms_net.ms_record_hook) | |||
| ms_net.relu.register_backward_hook(ms_net.ms_record_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| grad_net(input_ms, out_ms) | |||
| torch_net_grad_input0 = np.array([[10, 10], [10, 10]]) | |||
| torch_net_grad_output0 = np.array([[10, 10], [10, 10]]) | |||
| torch_net_grad_input1 = np.array([[20, 20], [20, 20]]) | |||
| torch_net_grad_output1 = np.array([[10, 10], [10, 10]]) | |||
| allclose_nparray(torch_net_grad_input0, ms_net.grad_output_list[0].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_output0, ms_net.grad_input_list[0].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_input1, ms_net.grad_output_list[1].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_output1, ms_net.grad_input_list[1].asnumpy(), 0.001, 0.001) | |||
| torch_net_grad_input3 = np.array([[20, 20], [20, 20]]) | |||
| torch_net_grad_output2 = np.array([[20, 20], [20, 20]]) | |||
| allclose_nparray(torch_net_grad_input3, ms_net.grad_output_list[2].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_output2, ms_net.grad_input_list[2].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_one_input_network_register_hook_to_mul_change_input_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsOneInputNet() | |||
| ms_net.set_grad() | |||
| ms_net.mul.register_backward_hook(ms_net.ms_change_grad_double_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input_ms, out_ms) | |||
| #input grad | |||
| input_torch_grad = np.array([[40, 40], [40, 40]]) | |||
| allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_multi_input_network_register_hook_to_mul2_change_input_grad(): | |||
| input1_np = np.array([2.0, 3.0, 4.0]).astype(np.float32) | |||
| input2_np = np.array([2.0, 3.0, 4.0]).astype(np.float32) | |||
| ms_net = MsMultiInputNet() | |||
| ms_net.set_grad() | |||
| ms_net.mul2.register_backward_hook(ms_net.ms_change_grad_double_hook) | |||
| input1_ms = Tensor(input1_np) | |||
| input2_ms = Tensor(input2_np) | |||
| out_ms = ms_net(input1_ms, input2_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input1_ms, input2_ms, out_ms) | |||
| #input grad | |||
| input1_torch_grad = np.array([384, 2916, 12288]) | |||
| input2_torch_grad = np.array([128, 972, 4096]) | |||
| allclose_nparray(input1_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(input2_torch_grad, input_ms_grad[1].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_network_with_cell_in_cell_register_hook_at_outermost_cell_change_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsNetWithCellinCell() | |||
| ms_net.set_grad() | |||
| ms_net.register_backward_hook(ms_net.ms_change_grad_double_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input_ms, out_ms) | |||
| #input grad | |||
| out_torch = np.array([[20, 20], [20, 20]]) | |||
| input_torch_grad = np.array([[160, 160], [160, 160]]) | |||
| allclose_nparray(out_torch, out_ms.asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_network_with_bprop_register_hook_at_outermost_cell_record_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsSingleOpNetWithBprop() | |||
| ms_net.set_grad() | |||
| ms_net.bprop_debug = True | |||
| ms_net.register_backward_hook(ms_net.ms_record_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input_ms, out_ms) | |||
| if ms_net.grad_output_list or ms_net.grad_input_list: | |||
| assert False | |||
| #input grad | |||
| out_torch = np.array([[1, 1], [1, 1]]) | |||
| input_torch_grad = np.array([[5, 5], [5, 5]]) | |||
| allclose_nparray(out_torch, out_ms.asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_network_with_bprop_in_child_register_hook_at_outermost_cell_record_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsNetHasBpropInChild() | |||
| ms_net.set_grad() | |||
| ms_net.bprop_net.bprop_debug = True | |||
| ms_net.register_backward_hook(ms_net.ms_record_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| input_ms_grad = grad_net(input_ms, out_ms) | |||
| if len(ms_net.grad_output_list) != len(ms_net.grad_input_list) or not ms_net.grad_output_list: | |||
| assert False | |||
| #input grad | |||
| out_torch = np.array([[5, 5], [5, 5]]) | |||
| input_torch_grad = np.array([[25, 25], [25, 25]]) | |||
| allclose_nparray(out_torch, out_ms.asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001) | |||
| #hook record grad | |||
| torch_net_grad_output = np.array([[5, 5], [5, 5]]) | |||
| torch_net_grad_input = np.array([[25, 25], [25, 25]]) | |||
| allclose_nparray(torch_net_grad_output, ms_net.grad_input_list[0].asnumpy(), 0.001, 0.001) | |||
| allclose_nparray(torch_net_grad_input, ms_net.grad_output_list[0].asnumpy(), 0.001, 0.001) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_pynative_hook_multi_op_network_with_bprop_register_hook_at_child_cell_record_grad(): | |||
| input_np = np.ones([2, 2]).astype(np.float32) | |||
| ms_net = MsMultiOpNetWithBprop() | |||
| ms_net.set_grad() | |||
| ms_net.bprop_debug = True | |||
| ms_net.relu.register_backward_hook(ms_net.ms_record_hook) | |||
| ms_net.mul.register_backward_hook(ms_net.ms_record_hook) | |||
| input_ms = Tensor(input_np) | |||
| out_ms = ms_net(input_ms) | |||
| grad_net = GradOfAllInputs(ms_net) | |||
| grad_net.set_train() | |||
| grad_net(input_ms, out_ms) | |||
| if ms_net.grad_output_list or ms_net.grad_input_list: | |||
| assert False | |||