diff --git a/model_zoo/official/nlp/textcnn/src/textcnn.py b/model_zoo/official/nlp/textcnn/src/textcnn.py index 88b3d7a907..3e16da594d 100644 --- a/model_zoo/official/nlp/textcnn/src/textcnn.py +++ b/model_zoo/official/nlp/textcnn/src/textcnn.py @@ -14,7 +14,6 @@ # ============================================================================ """TextCNN""" -import numpy as np import mindspore.nn as nn import mindspore.ops.operations as P from mindspore import Tensor @@ -89,17 +88,9 @@ class SoftmaxCrossEntropyExpand(Cell): return loss - -def _weight_variable(shape, factor=0.01): - init_value = np.random.randn(*shape).astype(np.float32) * factor - return Tensor(init_value) - - def make_conv_layer(kernel_size): - weight_shape = (96, 1, *kernel_size) - weight = _weight_variable(weight_shape) return nn.Conv2d(in_channels=1, out_channels=96, kernel_size=kernel_size, padding=1, - pad_mode="pad", weight_init=weight, has_bias=True) + pad_mode="pad", weight_init='uniform', has_bias=True) class TextCNN(nn.Cell): @@ -113,7 +104,7 @@ class TextCNN(nn.Cell): self.num_classes = num_classes self.unsqueeze = P.ExpandDims() - self.embedding = nn.Embedding(vocab_len, self.vec_length, embedding_table='normal') + self.embedding = nn.Embedding(vocab_len, self.vec_length, embedding_table='uniform') self.slice = P.Slice() self.layer1 = self.make_layer(kernel_height=3) @@ -125,7 +116,7 @@ class TextCNN(nn.Cell): self.fc = nn.Dense(96*3, self.num_classes) self.drop = nn.Dropout(keep_prob=0.5) self.print = P.Print() - self.reducemean = P.ReduceMax(keep_dims=False) + self.reducemax = P.ReduceMax(keep_dims=False) def make_layer(self, kernel_height): return nn.SequentialCell( @@ -145,9 +136,9 @@ class TextCNN(nn.Cell): x2 = self.layer2(x) x3 = self.layer3(x) - x1 = self.reducemean(x1, (2, 3)) - x2 = self.reducemean(x2, (2, 3)) - x3 = self.reducemean(x3, (2, 3)) + x1 = self.reducemax(x1, (2, 3)) + x2 = self.reducemax(x2, (2, 3)) + x3 = self.reducemax(x3, (2, 3)) x = self.concat((x1, x2, x3)) x = self.drop(x)