Merge pull request !4881 from byweng/fix_param_checktags/v0.7.0-beta
| @@ -65,9 +65,9 @@ class WithBNNLossCell: | |||||
| """ | """ | ||||
| def __init__(self, backbone, loss_fn, dnn_factor=1, bnn_factor=1): | def __init__(self, backbone, loss_fn, dnn_factor=1, bnn_factor=1): | ||||
| if not isinstance(dnn_factor, (int, float)): | |||||
| if isinstance(dnn_factor, bool) or not isinstance(dnn_factor, (int, float)): | |||||
| raise TypeError('The type of `dnn_factor` should be `int` or `float`') | raise TypeError('The type of `dnn_factor` should be `int` or `float`') | ||||
| if not isinstance(bnn_factor, (int, float)): | |||||
| if isinstance(bnn_factor, bool) or not isinstance(bnn_factor, (int, float)): | |||||
| raise TypeError('The type of `bnn_factor` should be `int` or `float`') | raise TypeError('The type of `bnn_factor` should be `int` or `float`') | ||||
| self.backbone = backbone | self.backbone = backbone | ||||
| @@ -173,13 +173,12 @@ class ConvReparam(_ConvVariational): | |||||
| r""" | r""" | ||||
| Convolutional variational layers with Reparameterization. | Convolutional variational layers with Reparameterization. | ||||
| See more details in paper `Auto-Encoding Variational Bayes | |||||
| <https://arxiv.org/abs/1312.6114>` | |||||
| See more details in paper `Auto-Encoding Variational Bayes <https://arxiv.org/abs/1312.6114>`_. | |||||
| Args: | Args: | ||||
| in_channels (int): The number of input channel :math:`C_{in}`. | in_channels (int): The number of input channel :math:`C_{in}`. | ||||
| out_channels (int): The number of output channel :math:`C_{out}`. | out_channels (int): The number of output channel :math:`C_{out}`. | ||||
| kernel_size (Union[int, tuple[int]]): The data type is int or | |||||
| kernel_size (Union[int, tuple[int]]): The data type is int or | |||||
| tuple with 2 integers. Specifies the height and width of the 2D | tuple with 2 integers. Specifies the height and width of the 2D | ||||
| convolution window. Single int means the value if for both | convolution window. Single int means the value if for both | ||||
| height and width of the kernel. A tuple of 2 ints means the | height and width of the kernel. A tuple of 2 ints means the | ||||
| @@ -132,8 +132,7 @@ class DenseReparam(_DenseVariational): | |||||
| r""" | r""" | ||||
| Dense variational layers with Reparameterization. | Dense variational layers with Reparameterization. | ||||
| See more details in paper `Auto-Encoding Variational Bayes | |||||
| <https://arxiv.org/abs/1312.6114>` | |||||
| See more details in paper `Auto-Encoding Variational Bayes <https://arxiv.org/abs/1312.6114>`_. | |||||
| Applies dense-connected layer for the input. This layer implements the operation as: | Applies dense-connected layer for the input. This layer implements the operation as: | ||||
| @@ -78,16 +78,17 @@ class NormalPosterior(Cell): | |||||
| if not isinstance(shape, (tuple, list)): | if not isinstance(shape, (tuple, list)): | ||||
| raise TypeError('The type of `shape` should be `tuple` or `list`') | raise TypeError('The type of `shape` should be `tuple` or `list`') | ||||
| if not isinstance(loc_mean, (int, float)): | |||||
| if isinstance(loc_mean, bool) or not isinstance(loc_mean, (int, float)): | |||||
| raise TypeError('The type of `loc_mean` should be `int` or `float`') | raise TypeError('The type of `loc_mean` should be `int` or `float`') | ||||
| if not isinstance(untransformed_scale_mean, (int, float)): | |||||
| if isinstance(untransformed_scale_mean, bool) or not isinstance(untransformed_scale_mean, (int, float)): | |||||
| raise TypeError('The type of `untransformed_scale_mean` should be `int` or `float`') | raise TypeError('The type of `untransformed_scale_mean` should be `int` or `float`') | ||||
| if not (isinstance(loc_std, (int, float)) and loc_std >= 0): | |||||
| if isinstance(loc_std, bool) or not (isinstance(loc_std, (int, float)) and loc_std >= 0): | |||||
| raise TypeError('The type of `loc_std` should be `int` or `float` and its value should > 0') | raise TypeError('The type of `loc_std` should be `int` or `float` and its value should > 0') | ||||
| if not (isinstance(untransformed_scale_std, (int, float)) and untransformed_scale_std >= 0): | |||||
| if isinstance(loc_std, bool) or not (isinstance(untransformed_scale_std, (int, float)) and | |||||
| untransformed_scale_std >= 0): | |||||
| raise TypeError('The type of `untransformed_scale_std` should be `int` or `float` and ' | raise TypeError('The type of `untransformed_scale_std` should be `int` or `float` and ' | ||||
| 'its value should > 0') | 'its value should > 0') | ||||
| @@ -61,9 +61,9 @@ class TransformToBNN: | |||||
| """ | """ | ||||
| def __init__(self, trainable_dnn, dnn_factor=1, bnn_factor=1): | def __init__(self, trainable_dnn, dnn_factor=1, bnn_factor=1): | ||||
| if not isinstance(dnn_factor, (int, float)): | |||||
| if isinstance(dnn_factor, bool) or not isinstance(dnn_factor, (int, float)): | |||||
| raise TypeError('The type of `dnn_factor` should be `int` or `float`') | raise TypeError('The type of `dnn_factor` should be `int` or `float`') | ||||
| if not isinstance(bnn_factor, (int, float)): | |||||
| if isinstance(bnn_factor, bool) or not isinstance(bnn_factor, (int, float)): | |||||
| raise TypeError('The type of `bnn_factor` should be `int` or `float`') | raise TypeError('The type of `bnn_factor` should be `int` or `float`') | ||||
| net_with_loss = trainable_dnn.network | net_with_loss = trainable_dnn.network | ||||