diff --git a/mindspore/nn/layer/math.py b/mindspore/nn/layer/math.py index ec759a5c15..458ce63b5e 100644 --- a/mindspore/nn/layer/math.py +++ b/mindspore/nn/layer/math.py @@ -428,7 +428,7 @@ class DiGamma(Cell): nan, real_result) -eps_fp16 = Tensor(np.finfo(np.float16).eps, mstype.float16) +eps_fp64 = Tensor(np.finfo(np.float64).eps, mstype.float64) eps_fp32 = Tensor(np.finfo(np.float32).eps, mstype.float32) def _while_helper_func(cond, body, vals): @@ -447,8 +447,8 @@ def _IgammaSeries(ax, x, a, enabled): dtype = P.DType() select = P.Select() - if dtype(ax) == mstype.float16: - epsilon = eps_fp16 + if dtype(ax) == mstype.float64: + epsilon = eps_fp64 else: epsilon = eps_fp32 @@ -499,8 +499,8 @@ def _IgammacContinuedFraction(ax, x, a, enabled): dtype = P.DType() select = P.Select() - if dtype(ax) == mstype.float16: - epsilon = eps_fp16 + if dtype(ax) == mstype.float64: + epsilon = eps_fp64 else: epsilon = eps_fp32 @@ -619,9 +619,9 @@ class IGamma(Cell): ``Ascend`` Inputs: - - **a** (Tensor) - The input tensor. With float16 or float32 data type. `a` should have + - **a** (Tensor) - The input tensor. With float32 or float64 data type. `a` should have the same dtype with `x`. - - **x** (Tensor) - The input tensor. With float16 or float32 data type. `x` should have + - **x** (Tensor) - The input tensor. With float32 or float64 data type. `x` should have the same dtype with `a`. Outputs: @@ -639,7 +639,7 @@ class IGamma(Cell): def __init__(self): super(IGamma, self).__init__() # const numbers - self.log_maxfloat16 = Tensor(np.log(np.finfo(np.float16).max), mstype.float16) + self.log_maxfloat64 = Tensor(np.log(np.finfo(np.float64).max), mstype.float64) self.log_maxfloat32 = Tensor(np.log(np.finfo(np.float32).max), mstype.float32) # operations @@ -664,7 +664,7 @@ class IGamma(Cell): def construct(self, a, x): a_dtype = self.dtype(a) x_dtype = self.dtype(x) - _check_input_dtype("input_a", a_dtype, [mstype.float16, mstype.float32], self.cls_name) + _check_input_dtype("input_a", a_dtype, [mstype.float32, mstype.float64], self.cls_name) _check_input_dtype("input_x", x_dtype, a_dtype, self.cls_name) domain_error = self.logicalor(self.less(x, 0), self.less(a, 0)) use_igammac = self.logicaland(self.greater(x, 1), self.greater(x, a)) @@ -673,8 +673,8 @@ class IGamma(Cell): a = boradcastto(a) x = boradcastto(x) x_is_zero = self.equal(x, 0) - if a_dtype == mstype.float16: - log_maxfloat = self.log_maxfloat16 + if a_dtype == mstype.float64: + log_maxfloat = self.log_maxfloat64 else: log_maxfloat = self.log_maxfloat32 underflow = self.less(ax, self.neg(log_maxfloat))