Merge pull request !2163 from Xiaoda/3-changing-embeddinglookup-internaltags/v0.5.0-beta
| @@ -191,7 +191,7 @@ def get_bprop_tile(self): | |||
| return bprop | |||
| @bprop_getters.register(P.EmbeddingLookup) | |||
| @bprop_getters.register(inner.EmbeddingLookup) | |||
| def get_bprop_embedding_lookup(self): | |||
| """Generate bprop for EmbeddingLookup""" | |||
| host_sub = P.Sub().add_prim_attr('primitive_target', 'CPU') | |||
| @@ -26,7 +26,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||
| Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, | |||
| SameTypeShape, ScatterAdd, ScatterMax, ScatterUpdate, | |||
| ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, | |||
| Shape, Size, Slice, Split, EmbeddingLookup, | |||
| Shape, Size, Slice, Split, | |||
| Squeeze, StridedSlice, Tile, TensorScatterUpdate, | |||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, | |||
| UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | |||
| @@ -138,7 +138,6 @@ __all__ = [ | |||
| 'ReduceSum', | |||
| 'ReduceMean', | |||
| 'LayerNorm', | |||
| 'EmbeddingLookup', | |||
| 'Rank', | |||
| 'Less', | |||
| 'LessEqual', | |||
| @@ -258,3 +258,73 @@ class AscendDequant(PrimitiveWithInfer): | |||
| validator.check_type_name("x", x_type, [mstype.int32], self.name) | |||
| validator.check_type_name("deq_scale", deq_scale_type, [mstype.float16, mstype.uint64], self.name) | |||
| return mstype.float16 | |||
| class EmbeddingLookup(PrimitiveWithInfer): | |||
| """ | |||
| Returns a slice of input tensor based on the specified indices. | |||
| This Primitive has the similar functionality as GatherV2 operating on `axis = 0`, but has three more inputs: | |||
| `offset`, `reduce_scatter_flag` and `split_num`. This primitive runs on the host instead of devices. | |||
| Inputs: | |||
| - **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| The Tensor slice, instead of the entire Tensor. | |||
| - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`. | |||
| Specifies the indices of elements of the original Tensor. Values can be out of range of `input_params`, | |||
| and the exceeding part will be filled with 0 in the output. | |||
| - **offset** (int) - Specifies the offset value of this `input_params` slice. Thus the real indices | |||
| are equal to `input_indices` minus `offset`. | |||
| - **reduce_scatter_flag** (bool) - Specifies whether perform reduce_scatter on host or not. | |||
| Only constant value is allowed. | |||
| - **split_num** (int) - Specifies the number of partitions of the reduce_scatter produces. This variable | |||
| is used only if `reduce_scatter_flag` is True. Only constant value is allowed. | |||
| Outputs: | |||
| Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. | |||
| Examples: | |||
| >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) | |||
| >>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) | |||
| >>> offset = 4 | |||
| >>> reduce_scatter_flag = False | |||
| >>> split_num = 1 | |||
| >>> out = P.EmbeddingLookup()(input_params, input_indices, offset, reduce_scatter_flag, split_num) | |||
| [[[10, 11], [0 ,0]], [[0, 0], [10, 11]]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init index_select""" | |||
| self.__setattr_flag__ = True | |||
| self.init_prim_io_names(inputs=['params', 'indices', 'offset', 'reduce_scatter_flag', 'split_num'], | |||
| outputs=['output']) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def __infer__(self, params, indices, offset, reduce_scatter_flag=False, split_num=2): | |||
| validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) | |||
| validator.check_tensor_type_same({"indices": indices['dtype']}, mstype.int_type, self.name) | |||
| validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name) | |||
| validator.check_subclass("split_num", split_num['dtype'], mstype.int_, self.name) | |||
| if split_num['value'] < 1: | |||
| raise ValueError("The parameter 'split_num' must be positive, but got %d." % split_num) | |||
| params_shp = params['shape'] | |||
| out_shape = indices['shape'] + params_shp[1:] | |||
| if reduce_scatter_flag is None: | |||
| raise ValueError("The value of 'reduce_scatter_flag' is None.") | |||
| reduce_scatter_flag_value = reduce_scatter_flag['value'] | |||
| if split_num is None: | |||
| raise ValueError("The value of 'split_num_value' is None.") | |||
| split_num_value = split_num['value'] | |||
| if reduce_scatter_flag_value is True: | |||
| # Partition the tensor along the dimension 0. The shape size of dimension 0 should be divisible by | |||
| # (split_num * 8) | |||
| if out_shape[0] % (split_num_value * 8) != 0: | |||
| raise ValueError("The dimension 0 of the shape: %d, is not divisible by: %d." % | |||
| (out_shape[0], (split_num_value * 8))) | |||
| # After 'Concat' on host, the shape size of dimension 0 is: out_shape[0] // 8 | |||
| out_shape[0] = out_shape[0] // 8 | |||
| out = {'shape': out_shape, | |||
| 'dtype': params['dtype'], | |||
| 'value': None} | |||
| return out | |||
| @@ -558,76 +558,6 @@ class SparseGatherV2(GatherV2): | |||
| """ | |||
| class EmbeddingLookup(PrimitiveWithInfer): | |||
| """ | |||
| Returns a slice of input tensor based on the specified indices. | |||
| This Primitive has the similar functionality as GatherV2 operating on `axis = 0`, but has three more inputs: | |||
| `offset`, `reduce_scatter_flag` and `split_num`. This primitive runs on the host instead of devices. | |||
| Inputs: | |||
| - **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||
| The Tensor slice, instead of the entire Tensor. | |||
| - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`. | |||
| Specifies the indices of elements of the original Tensor. Values can be out of range of `input_params`, | |||
| and the exceeding part will be filled with 0 in the output. | |||
| - **offset** (int) - Specifies the offset value of this `input_params` slice. Thus the real indices | |||
| are equal to `input_indices` minus `offset`. | |||
| - **reduce_scatter_flag** (bool) - Specifies whether perform reduce_scatter on host or not. | |||
| Only constant value is allowed. | |||
| - **split_num** (int) - Specifies the number of partitions of the reduce_scatter produces. This variable | |||
| is used only if `reduce_scatter_flag` is True. Only constant value is allowed. | |||
| Outputs: | |||
| Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. | |||
| Examples: | |||
| >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) | |||
| >>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) | |||
| >>> offset = 4 | |||
| >>> reduce_scatter_flag = False | |||
| >>> split_num = 1 | |||
| >>> out = P.EmbeddingLookup()(input_params, input_indices, offset, reduce_scatter_flag, split_num) | |||
| [[[10, 11], [0 ,0]], [[0, 0], [10, 11]]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init index_select""" | |||
| self.__setattr_flag__ = True | |||
| self.init_prim_io_names(inputs=['params', 'indices', 'offset', 'reduce_scatter_flag', 'split_num'], | |||
| outputs=['output']) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def __infer__(self, params, indices, offset, reduce_scatter_flag=False, split_num=2): | |||
| validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) | |||
| validator.check_tensor_type_same({"indices": indices['dtype']}, mstype.int_type, self.name) | |||
| validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name) | |||
| validator.check_subclass("split_num", split_num['dtype'], mstype.int_, self.name) | |||
| if split_num['value'] < 1: | |||
| raise ValueError("The parameter 'split_num' must be positive, but got %d." % split_num) | |||
| params_shp = params['shape'] | |||
| out_shape = indices['shape'] + params_shp[1:] | |||
| if reduce_scatter_flag is None: | |||
| raise ValueError("The value of 'reduce_scatter_flag' is None.") | |||
| reduce_scatter_flag_value = reduce_scatter_flag['value'] | |||
| if split_num is None: | |||
| raise ValueError("The value of 'split_num_value' is None.") | |||
| split_num_value = split_num['value'] | |||
| if reduce_scatter_flag_value is True: | |||
| # Partition the tensor along the dimension 0. The shape size of dimension 0 should be divisible by | |||
| # (split_num * 8) | |||
| if out_shape[0] % (split_num_value * 8) != 0: | |||
| raise ValueError("The dimension 0 of the shape: %d, is not divisible by: %d." % | |||
| (out_shape[0], (split_num_value * 8))) | |||
| # After 'Concat' on host, the shape size of dimension 0 is: out_shape[0] // 8 | |||
| out_shape[0] = out_shape[0] // 8 | |||
| out = {'shape': out_shape, | |||
| 'dtype': params['dtype'], | |||
| 'value': None} | |||
| return out | |||
| class Split(PrimitiveWithInfer): | |||
| """ | |||
| Splits input tensor into output_num of tensors along the given axis and output numbers. | |||
| @@ -19,6 +19,7 @@ import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import _executor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| @@ -39,7 +40,7 @@ class Net(nn.Cell): | |||
| self.offset = offset | |||
| self.reduce_scatter_flag = reduce_scatter_flag | |||
| self.split_num = split_num | |||
| self.elu = P.EmbeddingLookup() | |||
| self.elu = inner.EmbeddingLookup() | |||
| self.mm = P.BatchMatMul() | |||
| def construct(self, x, y): | |||