|
|
|
@@ -190,15 +190,18 @@ class LGamma(Cell): |
|
|
|
when x is an integer less or equal to 0, return +inf |
|
|
|
when x = +/- inf, return +inf |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **x** (Tensor) - The input tensor. Only float16, float32 are supported. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, has the same shape and dtype as the `x`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x is not float16 nor float32. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32)) |
|
|
|
>>> op = nn.LGamma() |
|
|
|
@@ -306,15 +309,18 @@ class DiGamma(Cell): |
|
|
|
|
|
|
|
digamma(x) = digamma(1 - x) - pi * cot(pi * x) |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **x** (Tensor[Number]) - The input tensor. Only float16, float32 are supported. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, has the same shape and dtype as the `x`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x is not float16 nor float32. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32)) |
|
|
|
>>> op = nn.DiGamma() |
|
|
|
@@ -568,9 +574,6 @@ class IGamma(Cell): |
|
|
|
|
|
|
|
Above :math:`Q(a, x)` is the upper regularized complete Gamma function. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **a** (Tensor) - The input tensor. With float32 data type. `a` should have |
|
|
|
the same dtype with `x`. |
|
|
|
@@ -580,6 +583,13 @@ class IGamma(Cell): |
|
|
|
Outputs: |
|
|
|
Tensor, has the same dtype as `a` and `x`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x and a is not float16 nor float32, |
|
|
|
or if x has different dtype with a. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_a = Tensor(np.array([2.0, 4.0, 6.0, 8.0]).astype(np.float32)) |
|
|
|
>>> input_x = Tensor(np.array([2.0, 3.0, 4.0, 5.0]).astype(np.float32)) |
|
|
|
@@ -649,9 +659,6 @@ class LBeta(Cell): |
|
|
|
decomposing lgamma into the Stirling approximation and an explicit log_gamma_correction, and cancelling |
|
|
|
the large terms from the Striling analytically. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **x** (Tensor) - The input tensor. With float16 or float32 data type. `x` should have |
|
|
|
the same dtype with `y`. |
|
|
|
@@ -661,6 +668,13 @@ class LBeta(Cell): |
|
|
|
Outputs: |
|
|
|
Tensor, has the same dtype as `x` and `y`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x and a is not float16 nor float32, |
|
|
|
or if x has different dtype with a. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` ``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([2.0, 4.0, 6.0, 8.0]).astype(np.float32)) |
|
|
|
>>> input_y = Tensor(np.array([2.0, 3.0, 14.0, 15.0]).astype(np.float32)) |
|
|
|
@@ -956,9 +970,6 @@ class MatInverse(Cell): |
|
|
|
""" |
|
|
|
Calculates the inverse of Positive-Definite Hermitian matrix using Cholesky decomposition. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **a** (Tensor[Number]) - The input tensor. It must be a positive-definite matrix. |
|
|
|
With float16 or float32 data type. |
|
|
|
@@ -966,6 +977,12 @@ class MatInverse(Cell): |
|
|
|
Outputs: |
|
|
|
Tensor, has the same dtype as the `a`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x is not float16 nor float32. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_a = Tensor(np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]]).astype(np.float32)) |
|
|
|
>>> op = nn.MatInverse() |
|
|
|
@@ -993,9 +1010,6 @@ class MatDet(Cell): |
|
|
|
""" |
|
|
|
Calculates the determinant of Positive-Definite Hermitian matrix using Cholesky decomposition. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``GPU`` |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **a** (Tensor[Number]) - The input tensor. It must be a positive-definite matrix. |
|
|
|
With float16 or float32 data type. |
|
|
|
@@ -1003,6 +1017,12 @@ class MatDet(Cell): |
|
|
|
Outputs: |
|
|
|
Tensor, has the same dtype as the `a`. |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If dtype of input x is not float16 nor float32. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``GPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_a = Tensor(np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]]).astype(np.float32)) |
|
|
|
>>> op = nn.MatDet() |
|
|
|
|