diff --git a/model_zoo/official/nlp/lstm/src/lstm.py b/model_zoo/official/nlp/lstm/src/lstm.py index 8a21f4ebde..7cbaecb4ef 100644 --- a/model_zoo/official/nlp/lstm/src/lstm.py +++ b/model_zoo/official/nlp/lstm/src/lstm.py @@ -198,15 +198,15 @@ class StackLSTMAscend(nn.Cell): # forward weight init w_np_fw = np.random.uniform(-stdv, stdv, - (input_size_list[i] + hidden_size, hidden_size * 4)).astype(np.float16) + (input_size_list[i] + hidden_size, hidden_size * 4)).astype(np.float32) w_fw = Parameter(initializer(Tensor(w_np_fw), w_np_fw.shape), name="w_fw_layer" + str(i)) weights_fw.append(w_fw) # forward bias init if has_bias: - b_fw = np.random.uniform(-stdv, stdv, (hidden_size * 4)).astype(np.float16) + b_fw = np.random.uniform(-stdv, stdv, (hidden_size * 4)).astype(np.float32) b_fw = Parameter(initializer(Tensor(b_fw), b_fw.shape), name="b_fw_layer" + str(i)) else: - b_fw = np.zeros((hidden_size * 4)).astype(np.float16) + b_fw = np.zeros((hidden_size * 4)).astype(np.float32) b_fw = Parameter(initializer(Tensor(b_fw), b_fw.shape), name="b_fw_layer" + str(i)) bias_fw.append(b_fw) @@ -214,21 +214,21 @@ class StackLSTMAscend(nn.Cell): # backward weight init w_np_bw = np.random.uniform(-stdv, stdv, - (input_size_list[i] + hidden_size, hidden_size * 4)).astype(np.float16) + (input_size_list[i] + hidden_size, hidden_size * 4)).astype(np.float32) w_bw = Parameter(initializer(Tensor(w_np_bw), w_np_bw.shape), name="w_bw_layer" + str(i)) weights_bw.append(w_bw) # backward bias init if has_bias: - b_bw = np.random.uniform(-stdv, stdv, (hidden_size * 4)).astype(np.float16) + b_bw = np.random.uniform(-stdv, stdv, (hidden_size * 4)).astype(np.float32) b_bw = Parameter(initializer(Tensor(b_bw), b_bw.shape), name="b_bw_layer" + str(i)) else: - b_bw = np.zeros((hidden_size * 4)).astype(np.float16) + b_bw = np.zeros((hidden_size * 4)).astype(np.float32) b_bw = Parameter(initializer(Tensor(b_bw), b_bw.shape), name="b_bw_layer" + str(i)) bias_bw.append(b_bw) # layer init - self.lstm = LSTM_Ascend(bidirectional=bidirectional) + self.lstm = LSTM_Ascend(bidirectional=bidirectional).to_float(mstype.float16) self.weight_fw = ParameterTuple(tuple(weights_fw)) self.weight_bw = ParameterTuple(tuple(weights_bw))