Browse Source

!5563 Fix C++ coding standard problem

Merge pull request !5563 from yeyunpeng2020/master
tags/v1.0.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
f3bc9b2f79
2 changed files with 16 additions and 19 deletions
  1. +1
    -1
      mindspore/lite/java/native/runtime/ms_tensor.cpp
  2. +15
    -18
      mindspore/lite/tools/converter/parser/tflite/tflite_util.cc

+ 1
- 1
mindspore/lite/java/native/runtime/ms_tensor.cpp View File

@@ -227,7 +227,7 @@ extern "C" JNIEXPORT jboolean JNICALL Java_com_mindspore_lite_MSTensor_setByteBu
jobject buffer) {
jbyte *p_data = reinterpret_cast<jbyte *>(env->GetDirectBufferAddress(buffer)); // get buffer poiter
jlong data_len = env->GetDirectBufferCapacity(buffer); // get buffer capacity
if (!p_data) {
if (p_data == nullptr) {
MS_LOGE("GetDirectBufferAddress return null");
return NULL;
}


+ 15
- 18
mindspore/lite/tools/converter/parser/tflite/tflite_util.cc View File

@@ -126,14 +126,10 @@ std::map<tflite::ActivationFunctionType, schema::ActivationType> tfMsActivationF
};

std::map<int, TypeId> type_map = {
{tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64},
{tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32},
{tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16},
{tflite::TensorType_INT32, TypeId::kNumberTypeInt32},
{tflite::TensorType_INT16, TypeId::kNumberTypeInt16},
{tflite::TensorType_INT8, TypeId::kNumberTypeInt8},
{tflite::TensorType_INT64, TypeId::kNumberTypeInt64},
{tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8},
{tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64}, {tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32},
{tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16}, {tflite::TensorType_INT32, TypeId::kNumberTypeInt32},
{tflite::TensorType_INT16, TypeId::kNumberTypeInt16}, {tflite::TensorType_INT8, TypeId::kNumberTypeInt8},
{tflite::TensorType_INT64, TypeId::kNumberTypeInt64}, {tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8},
{tflite::TensorType_BOOL, TypeId::kNumberTypeBool},
};

@@ -190,11 +186,8 @@ size_t GetDataTypeSize(const TypeId &data_type) {
}
}

STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
schema::PadMode pad_mode,
int strideH, int strideW,
int windowH, int windowW,
std::vector<int> *params) {
STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor, schema::PadMode pad_mode, int strideH,
int strideW, int windowH, int windowW, std::vector<int> *params) {
if (tensor == nullptr) {
MS_LOG(ERROR) << "the input tensor is null";
return RET_ERROR;
@@ -208,12 +201,18 @@ STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
auto shape = tensor->shape;
int H_input = shape.at(1);
int W_input = shape.at(2);

if (strideH == 0) {
MS_LOG(ERROR) << "strideH is zero";
return RET_ERROR;
}
int H_output = ceil(H_input * 1.0 / strideH);
int pad_needed_H = (H_output - 1) * strideH + windowH - H_input;
padUp = floor(pad_needed_H / 2.0);
padDown = pad_needed_H - padUp;

if (strideW == 0) {
MS_LOG(ERROR) << "strideW is zero";
return RET_ERROR;
}
int W_output = ceil(W_input * 1.0 / strideW);
int pad_needed_W = (W_output - 1) * strideW + windowW - W_input;
padLeft = floor(pad_needed_W / 2.0);
@@ -227,9 +226,7 @@ STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
return RET_OK;
}

void Split(const std::string &src_str,
std::vector<std::string> *dst_str,
const std::string &chr) {
void Split(const std::string &src_str, std::vector<std::string> *dst_str, const std::string &chr) {
std::string ::size_type p1 = 0, p2 = src_str.find(chr);
while (std::string::npos != p2) {
dst_str->push_back(src_str.substr(p1, p2 - p1));


Loading…
Cancel
Save