Merge pull request !4252 from tony_liu2/stagingtags/v0.7.0-beta
| @@ -13,37 +13,11 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::dsize_t; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| @@ -83,14 +57,6 @@ TEST_F(MindDataTestPipeline, TestCifar10Dataset) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10DatasetFail1."; | |||
| // Create a Cifar10 Dataset | |||
| std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10)); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCifar100Dataset) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar100Dataset."; | |||
| @@ -133,3 +99,11 @@ TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) { | |||
| std::shared_ptr<Dataset> ds = Cifar100("", RandomSampler(false, 10)); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10DatasetFail1."; | |||
| // Create a Cifar10 Dataset | |||
| std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10)); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| @@ -14,9 +14,9 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/core/global_context.h" | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/core/global_context.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::dataset::ShuffleMode; | |||
| @@ -27,76 +27,6 @@ class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetBasic) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetBasic."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string task = "AFQMC"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 2); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 2 samples | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetDistribution) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetDistribution."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string task = "AFQMC"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 3, 0); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 1 samples | |||
| EXPECT_EQ(i, 1); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetAFQMC) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetAFQMC."; | |||
| @@ -194,6 +124,41 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetAFQMC) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetBasic) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetBasic."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string task = "AFQMC"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 2); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 2 samples | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetCMNLI) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetCMNLI."; | |||
| @@ -284,14 +249,14 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetCSL) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetIFLYTEK) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetIFLYTEK."; | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetDistribution) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetDistribution."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/iflytek/train.json"; | |||
| std::string task = "IFLYTEK"; | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string task = "AFQMC"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kFalse); | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 3, 0); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -303,38 +268,61 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetIFLYTEK) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("sentence"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "第一个文本", | |||
| "第二个文本", | |||
| "第三个文本" | |||
| }; | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["sentence"]; | |||
| std::string_view sv; | |||
| text->GetItemAt(&sv, {0}); | |||
| std::string ss(sv); | |||
| EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| auto text = row["sentence1"]; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| // Expect 1 samples | |||
| EXPECT_EQ(i, 1); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetTNEWS) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetTNEWS."; | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetException) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetException."; | |||
| // Create a CLUE Dataset | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/wsc/train.json"; | |||
| std::string task = "WSC"; | |||
| std::string usage = "train"; | |||
| std::string invalid_clue_file = "./NotExistFile"; | |||
| std::shared_ptr<Dataset> ds0 = CLUE({}, task, usage); | |||
| EXPECT_EQ(ds0, nullptr); | |||
| std::shared_ptr<Dataset> ds1 = CLUE({invalid_clue_file}, task, usage); | |||
| EXPECT_EQ(ds1, nullptr); | |||
| std::shared_ptr<Dataset> ds2 = CLUE({clue_file}, "invalid_task", usage); | |||
| EXPECT_EQ(ds2, nullptr); | |||
| std::shared_ptr<Dataset> ds3 = CLUE({clue_file}, task, "invalid_usage"); | |||
| EXPECT_EQ(ds3, nullptr); | |||
| std::shared_ptr<Dataset> ds4 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 2, 2); | |||
| EXPECT_EQ(ds4, nullptr); | |||
| std::shared_ptr<Dataset> ds5 = CLUE({clue_file}, task, usage, -1, ShuffleMode::kGlobal); | |||
| EXPECT_EQ(ds5, nullptr); | |||
| std::shared_ptr<Dataset> ds6 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, -1); | |||
| EXPECT_EQ(ds6, nullptr); | |||
| std::shared_ptr<Dataset> ds7 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 0, -1); | |||
| EXPECT_EQ(ds7, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetIFLYTEK) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetIFLYTEK."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/tnews/train.json"; | |||
| std::string task = "TNEWS"; | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/iflytek/train.json"; | |||
| std::string task = "IFLYTEK"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kFalse); | |||
| EXPECT_NE(ds, nullptr); | |||
| @@ -350,9 +338,9 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetTNEWS) { | |||
| EXPECT_NE(row.find("sentence"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "新闻1", | |||
| "新闻2", | |||
| "新闻3" | |||
| "第一个文本", | |||
| "第二个文本", | |||
| "第三个文本" | |||
| }; | |||
| uint64_t i = 0; | |||
| @@ -374,17 +362,31 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetTNEWS) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetWSC) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetWSC."; | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleFiles) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetShuffleFiles."; | |||
| // Test CLUE Dataset with files shuffle, num_parallel_workers=1 | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/wsc/train.json"; | |||
| std::string task = "WSC"; | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| // Create a CLUE Dataset, with two text files | |||
| // Note: train.json has 3 rows | |||
| // Note: dev.json has 3 rows | |||
| // Use default of all samples | |||
| // They have the same keywords | |||
| // Set shuffle to files shuffle | |||
| std::string clue_file1 = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string clue_file2 = datasets_root_path_ + "/testCLUE/afqmc/dev.json"; | |||
| std::string task = "AFQMC"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kFalse); | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file1, clue_file2}, task, usage, 0, ShuffleMode::kFiles); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // Create an iterator over the result of the above dataset. | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| @@ -393,30 +395,37 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetWSC) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "小明呢,他在哪?", | |||
| "小红刚刚看到小明,他在操场", | |||
| "等小明回来,小张你叫他交作业" | |||
| "蚂蚁借呗等额还款能否换成先息后本", | |||
| "蚂蚁花呗说我违约了", | |||
| "帮我看看本月花呗账单结清了没", | |||
| "你有花呗吗", | |||
| "吃饭能用花呗吗", | |||
| "蚂蚁花呗支付金额有什么限制" | |||
| }; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["text"]; | |||
| auto text = row["sentence1"]; | |||
| std::string_view sv; | |||
| text->GetItemAt(&sv, {0}); | |||
| std::string ss(sv); | |||
| // Compare against expected result | |||
| EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| // Expect 3 + 3 = 6 samples | |||
| EXPECT_EQ(i, 6); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| // Restore configuration | |||
| GlobalContext::config_manager()->set_seed(original_seed); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleGlobal) { | |||
| @@ -476,31 +485,17 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleGlobal) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleFiles) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetShuffleFiles."; | |||
| // Test CLUE Dataset with files shuffle, num_parallel_workers=1 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetTNEWS) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetTNEWS."; | |||
| // Create a CLUE Dataset, with two text files | |||
| // Note: train.json has 3 rows | |||
| // Note: dev.json has 3 rows | |||
| // Use default of all samples | |||
| // They have the same keywords | |||
| // Set shuffle to files shuffle | |||
| std::string clue_file1 = datasets_root_path_ + "/testCLUE/afqmc/train.json"; | |||
| std::string clue_file2 = datasets_root_path_ + "/testCLUE/afqmc/dev.json"; | |||
| std::string task = "AFQMC"; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/tnews/train.json"; | |||
| std::string task = "TNEWS"; | |||
| std::string usage = "train"; | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file1, clue_file2}, task, usage, 0, ShuffleMode::kFiles); | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kFalse); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| @@ -509,68 +504,73 @@ TEST_F(MindDataTestPipeline, TestCLUEDatasetShuffleFiles) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("sentence1"), row.end()); | |||
| EXPECT_NE(row.find("sentence"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "蚂蚁借呗等额还款能否换成先息后本", | |||
| "蚂蚁花呗说我违约了", | |||
| "帮我看看本月花呗账单结清了没", | |||
| "你有花呗吗", | |||
| "吃饭能用花呗吗", | |||
| "蚂蚁花呗支付金额有什么限制" | |||
| "新闻1", | |||
| "新闻2", | |||
| "新闻3" | |||
| }; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["sentence1"]; | |||
| auto text = row["sentence"]; | |||
| std::string_view sv; | |||
| text->GetItemAt(&sv, {0}); | |||
| std::string ss(sv); | |||
| // Compare against expected result | |||
| EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| i++; | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| // Expect 3 + 3 = 6 samples | |||
| EXPECT_EQ(i, 6); | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| // Restore configuration | |||
| GlobalContext::config_manager()->set_seed(original_seed); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetException) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetException."; | |||
| // Create a CLUE Dataset | |||
| TEST_F(MindDataTestPipeline, TestCLUEDatasetWSC) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCLUEDatasetWSC."; | |||
| // Create a CLUEFile Dataset, with single CLUE file | |||
| std::string clue_file = datasets_root_path_ + "/testCLUE/wsc/train.json"; | |||
| std::string task = "WSC"; | |||
| std::string usage = "train"; | |||
| std::string invalid_clue_file = "./NotExistFile"; | |||
| std::shared_ptr<Dataset> ds0 = CLUE({}, task, usage); | |||
| EXPECT_EQ(ds0, nullptr); | |||
| std::shared_ptr<Dataset> ds1 = CLUE({invalid_clue_file}, task, usage); | |||
| EXPECT_EQ(ds1, nullptr); | |||
| std::shared_ptr<Dataset> ds = CLUE({clue_file}, task, usage, 0, ShuffleMode::kFalse); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<Dataset> ds2 = CLUE({clue_file}, "invalid_task", usage); | |||
| EXPECT_EQ(ds2, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| std::shared_ptr<Dataset> ds3 = CLUE({clue_file}, task, "invalid_usage"); | |||
| EXPECT_EQ(ds3, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| std::shared_ptr<Dataset> ds4 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 2, 2); | |||
| EXPECT_EQ(ds4, nullptr); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "小明呢,他在哪?", | |||
| "小红刚刚看到小明,他在操场", | |||
| "等小明回来,小张你叫他交作业" | |||
| }; | |||
| std::shared_ptr<Dataset> ds5 = CLUE({clue_file}, task, usage, -1, ShuffleMode::kGlobal); | |||
| EXPECT_EQ(ds5, nullptr); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto text = row["text"]; | |||
| std::string_view sv; | |||
| text->GetItemAt(&sv, {0}); | |||
| std::string ss(sv); | |||
| EXPECT_STREQ(ss.c_str(), expected_result[i].c_str()); | |||
| MS_LOG(INFO) << "Tensor text shape: " << text->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| std::shared_ptr<Dataset> ds6 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, -1); | |||
| EXPECT_EQ(ds6, nullptr); | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| std::shared_ptr<Dataset> ds7 = CLUE({clue_file}, task, usage, 0, ShuffleMode::kGlobal, 0, -1); | |||
| EXPECT_EQ(ds7, nullptr); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| @@ -13,49 +13,25 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::dsize_t; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestCocoDetection) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoDetection."; | |||
| TEST_F(MindDataTestPipeline, TestCocoDefault) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoDefault."; | |||
| // Create a Coco Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCOCO/train"; | |||
| std::string annotation_file = datasets_root_path_ + "/testCOCO/annotations/train.json"; | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file, "Detection", false, SequentialSampler(0, 6)); | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -67,28 +43,14 @@ TEST_F(MindDataTestPipeline, TestCocoDetection) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| std::string expect_file[] = {"000000391895", "000000318219", "000000554625", "000000574769", "000000060623", | |||
| "000000309022"}; | |||
| std::vector<std::vector<float>> expect_bbox_vector = {{10.0, 10.0, 10.0, 10.0, 70.0, 70.0, 70.0, 70.0}, | |||
| {20.0, 20.0, 20.0, 20.0, 80.0, 80.0, 80.0, 80.0}, | |||
| {30.0, 30.0, 30.0, 30.0}, {40.0, 40.0, 40.0, 40.0}, | |||
| {50.0, 50.0, 50.0, 50.0}, {60.0, 60.0, 60.0, 60.0}}; | |||
| std::vector<std::vector<uint32_t>> expect_catagoryid_list = {{1, 7}, {2, 8}, {3}, {4}, {5}, {6}}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto image = row["image"]; | |||
| auto bbox = row["bbox"]; | |||
| auto category_id = row["category_id"]; | |||
| std::shared_ptr<Tensor> expect_image; | |||
| Tensor::CreateFromFile(folder_path + "/" + expect_file[i] + ".jpg", &expect_image); | |||
| EXPECT_EQ(*image, *expect_image); | |||
| std::shared_ptr<Tensor> expect_bbox; | |||
| dsize_t bbox_num = static_cast<dsize_t>(expect_bbox_vector[i].size() / 4); | |||
| Tensor::CreateFromVector(expect_bbox_vector[i], TensorShape({bbox_num, 4}), &expect_bbox); | |||
| EXPECT_EQ(*bbox, *expect_bbox); | |||
| std::shared_ptr<Tensor> expect_categoryid; | |||
| Tensor::CreateFromVector(expect_catagoryid_list[i], TensorShape({bbox_num, 1}), &expect_categoryid); | |||
| EXPECT_EQ(*category_id, *expect_categoryid); | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| MS_LOG(INFO) << "Tensor bbox shape: " << bbox->shape(); | |||
| MS_LOG(INFO) << "Tensor category_id shape: " << category_id->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -99,13 +61,13 @@ TEST_F(MindDataTestPipeline, TestCocoDetection) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCocoStuff) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoStuff."; | |||
| TEST_F(MindDataTestPipeline, TestCocoDetection) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoDetection."; | |||
| // Create a Coco Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCOCO/train"; | |||
| std::string annotation_file = datasets_root_path_ + "/testCOCO/annotations/train.json"; | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file, "Stuff", false, SequentialSampler(0, 6)); | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file, "Detection", false, SequentialSampler(0, 6)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -119,27 +81,26 @@ TEST_F(MindDataTestPipeline, TestCocoStuff) { | |||
| std::string expect_file[] = {"000000391895", "000000318219", "000000554625", "000000574769", "000000060623", | |||
| "000000309022"}; | |||
| std::vector<std::vector<float>> expect_segmentation_vector = | |||
| {{10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, | |||
| 70.0, 72.0, 73.0, 74.0, 75.0, -1.0, -1.0, -1.0, -1.0, -1.0}, | |||
| {20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, | |||
| 10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0}, | |||
| {40.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 40.0, 41.0, 42.0}, | |||
| {50.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0}, | |||
| {60.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0}, | |||
| {60.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0}}; | |||
| std::vector<std::vector<dsize_t>> expect_size = {{2, 10}, {2, 11}, {1, 12}, {1, 13}, {1, 14}, {2, 7}}; | |||
| std::vector<std::vector<float>> expect_bbox_vector = {{10.0, 10.0, 10.0, 10.0, 70.0, 70.0, 70.0, 70.0}, | |||
| {20.0, 20.0, 20.0, 20.0, 80.0, 80.0, 80.0, 80.0}, | |||
| {30.0, 30.0, 30.0, 30.0}, {40.0, 40.0, 40.0, 40.0}, | |||
| {50.0, 50.0, 50.0, 50.0}, {60.0, 60.0, 60.0, 60.0}}; | |||
| std::vector<std::vector<uint32_t>> expect_catagoryid_list = {{1, 7}, {2, 8}, {3}, {4}, {5}, {6}}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto image = row["image"]; | |||
| auto segmentation = row["segmentation"]; | |||
| auto iscrowd = row["iscrowd"]; | |||
| auto bbox = row["bbox"]; | |||
| auto category_id = row["category_id"]; | |||
| std::shared_ptr<Tensor> expect_image; | |||
| Tensor::CreateFromFile(folder_path + "/" + expect_file[i] + ".jpg", &expect_image); | |||
| EXPECT_EQ(*image, *expect_image); | |||
| std::shared_ptr<Tensor> expect_segmentation; | |||
| Tensor::CreateFromVector(expect_segmentation_vector[i], TensorShape(expect_size[i]), &expect_segmentation); | |||
| EXPECT_EQ(*segmentation, *expect_segmentation); | |||
| std::shared_ptr<Tensor> expect_bbox; | |||
| dsize_t bbox_num = static_cast<dsize_t>(expect_bbox_vector[i].size() / 4); | |||
| Tensor::CreateFromVector(expect_bbox_vector[i], TensorShape({bbox_num, 4}), &expect_bbox); | |||
| EXPECT_EQ(*bbox, *expect_bbox); | |||
| std::shared_ptr<Tensor> expect_categoryid; | |||
| Tensor::CreateFromVector(expect_catagoryid_list[i], TensorShape({bbox_num, 1}), &expect_categoryid); | |||
| EXPECT_EQ(*category_id, *expect_categoryid); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -150,6 +111,24 @@ TEST_F(MindDataTestPipeline, TestCocoStuff) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCocoException) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoException."; | |||
| // Create a Coco Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCOCO/train"; | |||
| std::string annotation_file = datasets_root_path_ + "/testCOCO/annotations/train.json"; | |||
| std::string invalid_folder_path = "./NotExist"; | |||
| std::string invalid_annotation_file = "./NotExistFile"; | |||
| std::shared_ptr<Dataset> ds = Coco(invalid_folder_path, annotation_file); | |||
| EXPECT_EQ(ds, nullptr); | |||
| std::shared_ptr<Dataset> ds1 = Coco(folder_path, invalid_annotation_file); | |||
| EXPECT_EQ(ds1, nullptr); | |||
| std::shared_ptr<Dataset> ds2 = Coco(folder_path, annotation_file, "valid_mode"); | |||
| EXPECT_EQ(ds2, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCocoKeypoint) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoKeypoint."; | |||
| // Create a Coco Dataset | |||
| @@ -261,13 +240,13 @@ TEST_F(MindDataTestPipeline, TestCocoPanoptic) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCocoDefault) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoDetection."; | |||
| TEST_F(MindDataTestPipeline, TestCocoStuff) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoStuff."; | |||
| // Create a Coco Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCOCO/train"; | |||
| std::string annotation_file = datasets_root_path_ + "/testCOCO/annotations/train.json"; | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file); | |||
| std::shared_ptr<Dataset> ds = Coco(folder_path, annotation_file, "Stuff", false, SequentialSampler(0, 6)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -279,14 +258,29 @@ TEST_F(MindDataTestPipeline, TestCocoDefault) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| std::string expect_file[] = {"000000391895", "000000318219", "000000554625", "000000574769", "000000060623", | |||
| "000000309022"}; | |||
| std::vector<std::vector<float>> expect_segmentation_vector = | |||
| {{10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, | |||
| 70.0, 72.0, 73.0, 74.0, 75.0, -1.0, -1.0, -1.0, -1.0, -1.0}, | |||
| {20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, | |||
| 10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0}, | |||
| {40.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 40.0, 41.0, 42.0}, | |||
| {50.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0}, | |||
| {60.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0}, | |||
| {60.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0}}; | |||
| std::vector<std::vector<dsize_t>> expect_size = {{2, 10}, {2, 11}, {1, 12}, {1, 13}, {1, 14}, {2, 7}}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto image = row["image"]; | |||
| auto bbox = row["bbox"]; | |||
| auto category_id = row["category_id"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| MS_LOG(INFO) << "Tensor bbox shape: " << bbox->shape(); | |||
| MS_LOG(INFO) << "Tensor category_id shape: " << category_id->shape(); | |||
| auto segmentation = row["segmentation"]; | |||
| auto iscrowd = row["iscrowd"]; | |||
| std::shared_ptr<Tensor> expect_image; | |||
| Tensor::CreateFromFile(folder_path + "/" + expect_file[i] + ".jpg", &expect_image); | |||
| EXPECT_EQ(*image, *expect_image); | |||
| std::shared_ptr<Tensor> expect_segmentation; | |||
| Tensor::CreateFromVector(expect_segmentation_vector[i], TensorShape(expect_size[i]), &expect_segmentation); | |||
| EXPECT_EQ(*segmentation, *expect_segmentation); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| @@ -296,21 +290,3 @@ TEST_F(MindDataTestPipeline, TestCocoDefault) { | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCocoException) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCocoDetection."; | |||
| // Create a Coco Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCOCO/train"; | |||
| std::string annotation_file = datasets_root_path_ + "/testCOCO/annotations/train.json"; | |||
| std::string invalid_folder_path = "./NotExist"; | |||
| std::string invalid_annotation_file = "./NotExistFile"; | |||
| std::shared_ptr<Dataset> ds = Coco(invalid_folder_path, annotation_file); | |||
| EXPECT_EQ(ds, nullptr); | |||
| std::shared_ptr<Dataset> ds1 = Coco(folder_path, invalid_annotation_file); | |||
| EXPECT_EQ(ds1, nullptr); | |||
| std::shared_ptr<Dataset> ds2 = Coco(folder_path, annotation_file, "valid_mode"); | |||
| EXPECT_EQ(ds2, nullptr); | |||
| } | |||
| @@ -13,41 +13,15 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "./securec.h" | |||
| #include "minddata/dataset/core/client.h" | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/global_context.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| using namespace mindspore::dataset; | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::ShuffleMode; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| @@ -109,6 +83,87 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetBasic) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail1."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid samplers=-1 | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, -1); | |||
| // Expect failure: Number of samples cannot be negative | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail2) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail2."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with wrongful empty dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({}); | |||
| // Expect failure: dataset_files is not specified | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail3) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail3."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with non-existent dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({"notexist.txt"}, 0, ShuffleMode::kFalse); | |||
| // Expect failure: specified dataset_files does not exist | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail4."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with empty string dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({""}, 0, ShuffleMode::kFiles); | |||
| // Expect failure: specified dataset_files does not exist | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail5) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail5."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid num_shards=0 value | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 1, ShuffleMode::kFalse, 0); | |||
| // Expect failure: Number of shards cannot be <=0 | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail6) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail6."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid shard_id=-1 value | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kFiles, -1); | |||
| // Expect failure: shard_id cannot be negative | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail7) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail7."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid shard_id=2 and num_shards=2 combination | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kGlobal, 2, 2); | |||
| // Expect failure: Cannot have shard_id >= num_shards | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFalse1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleFalse1."; | |||
| // Test TextFile Dataset with two text files and no shuffle, num_parallel_workers=1 | |||
| @@ -224,22 +279,25 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFalse4Shard) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal1A."; | |||
| // Test TextFile Dataset with 1 text file, global shuffle, num_parallel_workers=1 | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleFiles1."; | |||
| // Test TextFile Dataset with files shuffle, num_parallel_workers=1 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(246); | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| // Create a TextFile Dataset, with two text files | |||
| // Note: 1.txt has 3 rows | |||
| // Set shuffle to global shuffle | |||
| // Note: 2.txt has 2 rows | |||
| // Use default of all samples | |||
| // Set shuffle to files shuffle | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kGlobal); | |||
| std::string tf_file2 = datasets_root_path_ + "/testTextFileDataset/2.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kFiles); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| @@ -252,7 +310,9 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = {"Good luck to everyone.", "This is a text file.", "Be happy every day."}; | |||
| std::vector<std::string> expected_result = { | |||
| "This is a text file.", "Be happy every day.", "Good luck to everyone.", "Another file.", "End of file.", | |||
| }; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| @@ -268,8 +328,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| // Expect 2 + 3 = 5 samples | |||
| EXPECT_EQ(i, 5); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| @@ -279,24 +339,25 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1B) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal1B."; | |||
| // Test TextFile Dataset with 2 text files, global shuffle, num_parallel_workers=1 | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleFiles4."; | |||
| // Test TextFile Dataset with files shuffle, num_parallel_workers=4 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(246); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(4); | |||
| // Create a TextFile Dataset, with two text files | |||
| // Note: 1.txt has 3 rows | |||
| // Note: 2.txt has 2 rows | |||
| // Set shuffle to global shuffle | |||
| // Use default of all samples | |||
| // Set shuffle to files shuffle | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::string tf_file2 = datasets_root_path_ + "/testTextFileDataset/2.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kGlobal); | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kFiles); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| @@ -309,8 +370,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1B) { | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = {"Another file.", "Good luck to everyone.", "This is a text file.", | |||
| "End of file.", "Be happy every day."}; | |||
| std::vector<std::string> expected_result = {"This is a text file.", "Another file.", "Be happy every day.", | |||
| "End of file.", "Good luck to everyone."}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| @@ -337,24 +398,22 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1B) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal4."; | |||
| // Test TextFile Dataset with 2 text files, global shuffle, num_parallel_workers=4 | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1A) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal1A."; | |||
| // Test TextFile Dataset with 1 text file, global shuffle, num_parallel_workers=1 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(246); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(4); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| // Create a TextFile Dataset, with two text files | |||
| // Note: 1.txt has 3 rows | |||
| // Note: 2.txt has 2 rows | |||
| // Set shuffle to global shuffle | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::string tf_file2 = datasets_root_path_ + "/testTextFileDataset/2.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kGlobal); | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kGlobal); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| @@ -367,8 +426,7 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = {"Another file.", "Good luck to everyone.", "End of file.", | |||
| "This is a text file.", "Be happy every day."}; | |||
| std::vector<std::string> expected_result = {"Good luck to everyone.", "This is a text file.", "Be happy every day."}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| @@ -384,8 +442,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| iter->GetNextRow(&row); | |||
| } | |||
| // Expect 2 + 3 = 5 samples | |||
| EXPECT_EQ(i, 5); | |||
| // Expect 3 samples | |||
| EXPECT_EQ(i, 3); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| @@ -395,25 +453,24 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleFiles1."; | |||
| // Test TextFile Dataset with files shuffle, num_parallel_workers=1 | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal1B) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal1B."; | |||
| // Test TextFile Dataset with 2 text files, global shuffle, num_parallel_workers=1 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_seed(246); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(1); | |||
| // Create a TextFile Dataset, with two text files | |||
| // Note: 1.txt has 3 rows | |||
| // Note: 2.txt has 2 rows | |||
| // Use default of all samples | |||
| // Set shuffle to files shuffle | |||
| // Set shuffle to global shuffle | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::string tf_file2 = datasets_root_path_ + "/testTextFileDataset/2.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kFiles); | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kGlobal); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| @@ -426,9 +483,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1) { | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = { | |||
| "This is a text file.", "Be happy every day.", "Good luck to everyone.", "Another file.", "End of file.", | |||
| }; | |||
| std::vector<std::string> expected_result = {"Another file.", "Good luck to everyone.", "This is a text file.", | |||
| "End of file.", "Be happy every day."}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| @@ -455,25 +511,24 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles1) { | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleFiles4."; | |||
| // Test TextFile Dataset with files shuffle, num_parallel_workers=4 | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleGlobal4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetShuffleGlobal4."; | |||
| // Test TextFile Dataset with 2 text files, global shuffle, num_parallel_workers=4 | |||
| // Set configuration | |||
| uint32_t original_seed = GlobalContext::config_manager()->seed(); | |||
| uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers(); | |||
| MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers; | |||
| GlobalContext::config_manager()->set_seed(135); | |||
| GlobalContext::config_manager()->set_seed(246); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(4); | |||
| // Create a TextFile Dataset, with two text files | |||
| // Note: 1.txt has 3 rows | |||
| // Note: 2.txt has 2 rows | |||
| // Use default of all samples | |||
| // Set shuffle to files shuffle | |||
| // Set shuffle to global shuffle | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::string tf_file2 = datasets_root_path_ + "/testTextFileDataset/2.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kFiles); | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1, tf_file2}, 0, ShuffleMode::kGlobal); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset. | |||
| @@ -486,8 +541,8 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles4) { | |||
| iter->GetNextRow(&row); | |||
| EXPECT_NE(row.find("text"), row.end()); | |||
| std::vector<std::string> expected_result = {"This is a text file.", "Another file.", "Be happy every day.", | |||
| "End of file.", "Good luck to everyone."}; | |||
| std::vector<std::string> expected_result = {"Another file.", "Good luck to everyone.", "End of file.", | |||
| "This is a text file.", "Be happy every day."}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| @@ -513,84 +568,3 @@ TEST_F(MindDataTestPipeline, TestTextFileDatasetShuffleFiles4) { | |||
| GlobalContext::config_manager()->set_seed(original_seed); | |||
| GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail1."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid samplers=-1 | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, -1); | |||
| // Expect failure: Number of samples cannot be negative | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail2) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail2."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with wrongful empty dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({}); | |||
| // Expect failure: dataset_files is not specified | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail3) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail3."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with non-existent dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({"notexist.txt"}, 0, ShuffleMode::kFalse); | |||
| // Expect failure: specified dataset_files does not exist | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail4) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail4."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with empty string dataset_files input | |||
| std::shared_ptr<Dataset> ds = TextFile({""}, 0, ShuffleMode::kFiles); | |||
| // Expect failure: specified dataset_files does not exist | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail5) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail5."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid num_shards=0 value | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 1, ShuffleMode::kFalse, 0); | |||
| // Expect failure: Number of shards cannot be <=0 | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail6) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail6."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid shard_id=-1 value | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kFiles, -1); | |||
| // Expect failure: shard_id cannot be negative | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestTextFileDatasetFail7) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTextFileDatasetFail7."; | |||
| // Attempt to create a TextFile Dataset | |||
| // with invalid shard_id=2 and num_shards=2 combination | |||
| std::string tf_file1 = datasets_root_path_ + "/testTextFileDataset/1.txt"; | |||
| std::shared_ptr<Dataset> ds = TextFile({tf_file1}, 0, ShuffleMode::kGlobal, 2, 2); | |||
| // Expect failure: Cannot have shard_id >= num_shards | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| @@ -13,139 +13,107 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::dsize_t; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestIteratorOneColumn) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorOneColumn."; | |||
| // Create a Mnist Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testMnistData/"; | |||
| std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 4)); | |||
| TEST_F(MindDataTestPipeline, TestIteratorEmptyColumn) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorEmptyColumn."; | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 5)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 2; | |||
| ds = ds->Batch(batch_size); | |||
| // Create a Rename operation on ds | |||
| ds = ds->Rename({"image", "label"}, {"col1", "col2"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // Only select "image" column and drop others | |||
| std::vector<std::string> columns = {"image"}; | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(columns); | |||
| // No columns are specified, use all columns | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::vector<std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| TensorShape expect({2, 28, 28, 1}); | |||
| TensorShape expect0({32, 32, 3}); | |||
| TensorShape expect1({}); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| for (auto &v : row) { | |||
| MS_LOG(INFO) << "image shape:" << v->shape(); | |||
| EXPECT_EQ(expect, v->shape()); | |||
| } | |||
| MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| EXPECT_EQ(expect0, row[0]->shape()); | |||
| EXPECT_EQ(expect1, row[1]->shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| EXPECT_EQ(i, 2); | |||
| EXPECT_EQ(i, 5); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestIteratorTwoColumns) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorTwoColumns."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4)); | |||
| TEST_F(MindDataTestPipeline, TestIteratorOneColumn) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorOneColumn."; | |||
| // Create a Mnist Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testMnistData/"; | |||
| std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 4)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 2; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // Only select "image" and "bbox" column | |||
| std::vector<std::string> columns = {"image", "bbox"}; | |||
| // Only select "image" column and drop others | |||
| std::vector<std::string> columns = {"image"}; | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(columns); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::vector<std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| std::vector<TensorShape> expect = {TensorShape({173673}), TensorShape({1, 4}), | |||
| TensorShape({173673}), TensorShape({1, 4}), | |||
| TensorShape({147025}), TensorShape({1, 4}), | |||
| TensorShape({211653}), TensorShape({1, 4})}; | |||
| TensorShape expect({2, 28, 28, 1}); | |||
| uint64_t i = 0; | |||
| uint64_t j = 0; | |||
| while (row.size() != 0) { | |||
| MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| EXPECT_EQ(2, row.size()); | |||
| EXPECT_EQ(expect[j++], row[0]->shape()); | |||
| EXPECT_EQ(expect[j++], row[1]->shape()); | |||
| for (auto &v : row) { | |||
| MS_LOG(INFO) << "image shape:" << v->shape(); | |||
| EXPECT_EQ(expect, v->shape()); | |||
| } | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| j = (j == expect.size()) ? 0 : j; | |||
| } | |||
| EXPECT_EQ(i, 8); | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestIteratorEmptyColumn) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorEmptyColumn."; | |||
| TEST_F(MindDataTestPipeline, TestIteratorReOrder) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorReOrder."; | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 5)); | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, SequentialSampler(false, 4)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Rename operation on ds | |||
| ds = ds->Rename({"image", "label"}, {"col1", "col2"}); | |||
| // Create a Take operation on ds | |||
| ds = ds->Take(2); | |||
| EXPECT_NE(ds, nullptr); | |||
| // No columns are specified, use all columns | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| // Create an iterator over the result of the above dataset | |||
| // Reorder "image" and "label" column | |||
| std::vector<std::string> columns = {"label", "image"}; | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(columns); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| @@ -154,56 +122,62 @@ TEST_F(MindDataTestPipeline, TestIteratorEmptyColumn) { | |||
| TensorShape expect0({32, 32, 3}); | |||
| TensorShape expect1({}); | |||
| // Check if we will catch "label" before "image" in row | |||
| std::vector<std::string> expect = {"label", "image"}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| EXPECT_EQ(expect0, row[0]->shape()); | |||
| EXPECT_EQ(expect1, row[1]->shape()); | |||
| EXPECT_EQ(expect1, row[0]->shape()); | |||
| EXPECT_EQ(expect0, row[1]->shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| } | |||
| EXPECT_EQ(i, 5); | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestIteratorReOrder) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorReOrder."; | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, SequentialSampler(false, 4)); | |||
| TEST_F(MindDataTestPipeline, TestIteratorTwoColumns) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestIteratorTwoColumns."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Take operation on ds | |||
| ds = ds->Take(2); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // Reorder "image" and "label" column | |||
| std::vector<std::string> columns = {"label", "image"}; | |||
| // Only select "image" and "bbox" column | |||
| std::vector<std::string> columns = {"image", "bbox"}; | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(columns); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::vector<std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| TensorShape expect0({32, 32, 3}); | |||
| TensorShape expect1({}); | |||
| std::vector<TensorShape> expect = {TensorShape({173673}), TensorShape({1, 4}), | |||
| TensorShape({173673}), TensorShape({1, 4}), | |||
| TensorShape({147025}), TensorShape({1, 4}), | |||
| TensorShape({211653}), TensorShape({1, 4})}; | |||
| // Check if we will catch "label" before "image" in row | |||
| std::vector<std::string> expect = {"label", "image"}; | |||
| uint64_t i = 0; | |||
| uint64_t j = 0; | |||
| while (row.size() != 0) { | |||
| MS_LOG(INFO) << "row[0]:" << row[0]->shape() << ", row[1]:" << row[1]->shape(); | |||
| EXPECT_EQ(expect1, row[0]->shape()); | |||
| EXPECT_EQ(expect0, row[1]->shape()); | |||
| EXPECT_EQ(2, row.size()); | |||
| EXPECT_EQ(expect[j++], row[0]->shape()); | |||
| EXPECT_EQ(expect[j++], row[1]->shape()); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| j = (j == expect.size()) ? 0 : j; | |||
| } | |||
| EXPECT_EQ(i, 2); | |||
| EXPECT_EQ(i, 8); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| @@ -13,54 +13,30 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| #include "minddata/dataset/engine/datasetops/source/voc_op.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::dsize_t; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestVOCSegmentation) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentation."; | |||
| TEST_F(MindDataTestPipeline, TestVOCClassIndex) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCClassIndex."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", {}, false, SequentialSampler(0, 3)); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::map<std::string, int32_t> class_index; | |||
| class_index["car"] = 0; | |||
| class_index["cat"] = 1; | |||
| class_index["train"] = 9; | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", class_index, false, SequentialSampler(0, 6)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -72,23 +48,20 @@ TEST_F(MindDataTestPipeline, TestVOCSegmentation) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| // Check if VOCOp read correct images/targets | |||
| using Tensor = mindspore::dataset::Tensor; | |||
| std::string expect_file[] = {"32", "33", "39", "32", "33", "39"}; | |||
| // Check if VOCOp read correct labels | |||
| // When we provide class_index, label of ["car","cat","train"] become [0,1,9] | |||
| std::shared_ptr<Tensor> expect_label; | |||
| Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label); | |||
| uint32_t expect[] = {9, 9, 9, 1, 1, 0}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto image = row["image"]; | |||
| auto target = row["target"]; | |||
| auto label = row["label"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| MS_LOG(INFO) << "Tensor target shape: " << target->shape(); | |||
| std::shared_ptr<Tensor> expect_image; | |||
| Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image); | |||
| EXPECT_EQ(*image, *expect_image); | |||
| std::shared_ptr<Tensor> expect_target; | |||
| Tensor::CreateFromFile(folder_path + "/SegmentationClass/" + expect_file[i] + ".png", &expect_target); | |||
| EXPECT_EQ(*target, *expect_target); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| expect_label->SetItemAt({0, 0}, expect[i]); | |||
| EXPECT_EQ(*label, *expect_label); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -100,33 +73,6 @@ TEST_F(MindDataTestPipeline, TestVOCSegmentation) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCSegmentationError1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentationError1."; | |||
| // Create a VOC Dataset | |||
| std::map<std::string, int32_t> class_index; | |||
| class_index["car"] = 0; | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", class_index, false, RandomSampler(false, 6)); | |||
| // Expect nullptr for segmentation task with class_index | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCInvalidTaskOrMode) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCInvalidTaskOrMode."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds_1 = VOC(folder_path, "Classification", "train", {}, false, SequentialSampler(0, 3)); | |||
| // Expect nullptr for invalid task | |||
| EXPECT_EQ(ds_1, nullptr); | |||
| std::shared_ptr<Dataset> ds_2 = VOC(folder_path, "Segmentation", "validation", {}, false, RandomSampler(false, 4)); | |||
| // Expect nullptr for invalid mode | |||
| EXPECT_EQ(ds_2, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCDetection) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCDetection."; | |||
| @@ -173,17 +119,31 @@ TEST_F(MindDataTestPipeline, TestVOCDetection) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCClassIndex) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCClassIndex."; | |||
| TEST_F(MindDataTestPipeline, TestVOCInvalidTaskOrMode) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCInvalidTaskOrMode."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::map<std::string, int32_t> class_index; | |||
| class_index["car"] = 0; | |||
| class_index["cat"] = 1; | |||
| class_index["train"] = 9; | |||
| std::shared_ptr<Dataset> ds_1 = VOC(folder_path, "Classification", "train", {}, false, SequentialSampler(0, 3)); | |||
| // Expect nullptr for invalid task | |||
| EXPECT_EQ(ds_1, nullptr); | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", class_index, false, SequentialSampler(0, 6)); | |||
| std::shared_ptr<Dataset> ds_2 = VOC(folder_path, "Segmentation", "validation", {}, false, RandomSampler(false, 4)); | |||
| // Expect nullptr for invalid mode | |||
| EXPECT_EQ(ds_2, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCSegmentation) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentation."; | |||
| // Create a VOC Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", {}, false, SequentialSampler(0, 3)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -195,20 +155,23 @@ TEST_F(MindDataTestPipeline, TestVOCClassIndex) { | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| // Check if VOCOp read correct labels | |||
| // When we provide class_index, label of ["car","cat","train"] become [0,1,9] | |||
| std::shared_ptr<Tensor> expect_label; | |||
| Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label); | |||
| uint32_t expect[] = {9, 9, 9, 1, 1, 0}; | |||
| // Check if VOCOp read correct images/targets | |||
| using Tensor = mindspore::dataset::Tensor; | |||
| std::string expect_file[] = {"32", "33", "39", "32", "33", "39"}; | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| auto image = row["image"]; | |||
| auto label = row["label"]; | |||
| auto target = row["target"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| MS_LOG(INFO) << "Tensor label shape: " << label->shape(); | |||
| expect_label->SetItemAt({0, 0}, expect[i]); | |||
| EXPECT_EQ(*label, *expect_label); | |||
| MS_LOG(INFO) << "Tensor target shape: " << target->shape(); | |||
| std::shared_ptr<Tensor> expect_image; | |||
| Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image); | |||
| EXPECT_EQ(*image, *expect_image); | |||
| std::shared_ptr<Tensor> expect_target; | |||
| Tensor::CreateFromFile(folder_path + "/SegmentationClass/" + expect_file[i] + ".png", &expect_target); | |||
| EXPECT_EQ(*target, *expect_target); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| @@ -219,3 +182,16 @@ TEST_F(MindDataTestPipeline, TestVOCClassIndex) { | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestVOCSegmentationError1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentationError1."; | |||
| // Create a VOC Dataset | |||
| std::map<std::string, int32_t> class_index; | |||
| class_index["car"] = 0; | |||
| std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; | |||
| std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", class_index, false, RandomSampler(false, 6)); | |||
| // Expect nullptr for segmentation task with class_index | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| @@ -13,58 +13,17 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::TensorShape; | |||
| using mindspore::dataset::TensorImpl; | |||
| using mindspore::dataset::DataType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::dsize_t; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestMnistFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMnistFail1."; | |||
| // Create a Mnist Dataset | |||
| std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10)); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestImageFolderFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderFail1."; | |||
| // Create an ImageFolder Dataset | |||
| std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCelebADataset) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebADataset."; | |||
| @@ -158,3 +117,19 @@ TEST_F(MindDataTestPipeline, TestCelebAException) { | |||
| std::shared_ptr<Dataset> ds1 = CelebA(folder_path, invalid_dataset_type); | |||
| EXPECT_EQ(ds1, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestImageFolderFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderFail1."; | |||
| // Create an ImageFolder Dataset | |||
| std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMnistFail1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMnistFail1."; | |||
| // Create a Mnist Dataset | |||
| std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10)); | |||
| EXPECT_EQ(ds, nullptr); | |||
| } | |||
| @@ -13,33 +13,11 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::BorderType; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| @@ -13,64 +13,43 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <string> | |||
| #include "utils/log_adapter.h" | |||
| #include "utils/ms_utils.h" | |||
| #include "common/common.h" | |||
| #include "gtest/gtest.h" | |||
| #include "securec.h" | |||
| #include "minddata/dataset/include/datasets.h" | |||
| #include "minddata/dataset/include/status.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/iterator.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/include/samplers.h" | |||
| using namespace mindspore::dataset::api; | |||
| using mindspore::LogStream; | |||
| using mindspore::dataset::BorderType; | |||
| using mindspore::dataset::Status; | |||
| using mindspore::dataset::Tensor; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::MsLogLevel::ERROR; | |||
| class MindDataTestPipeline : public UT::DatasetOpTesting { | |||
| protected: | |||
| }; | |||
| TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { | |||
| // Create a Mnist Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testMnistData/"; | |||
| std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20)); | |||
| TEST_F(MindDataTestPipeline, TestCutOut) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 1; | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30}); | |||
| EXPECT_NE(resize_op, nullptr); | |||
| std::shared_ptr<TensorOperation> random_crop_op = vision::RandomCrop({28, 28}); | |||
| EXPECT_NE(random_crop_op, nullptr); | |||
| std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16}); | |||
| EXPECT_NE(center_crop_op, nullptr); | |||
| std::shared_ptr<TensorOperation> cut_out1 = vision::CutOut(30, 5); | |||
| EXPECT_NE(cut_out1, nullptr); | |||
| std::shared_ptr<TensorOperation> uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2); | |||
| EXPECT_NE(uniform_aug_op, nullptr); | |||
| std::shared_ptr<TensorOperation> cut_out2 = vision::CutOut(30); | |||
| EXPECT_NE(cut_out2, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({resize_op, uniform_aug_op}); | |||
| ds = ds->Map({cut_out1, cut_out2}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -84,10 +63,10 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| @@ -96,10 +75,10 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomFlip) { | |||
| TEST_F(MindDataTestPipeline, TestDecode) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| @@ -108,14 +87,11 @@ TEST_F(MindDataTestPipeline, TestRandomFlip) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5); | |||
| EXPECT_NE(random_vertical_flip_op, nullptr); | |||
| std::shared_ptr<TensorOperation> random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5); | |||
| EXPECT_NE(random_horizontal_flip_op, nullptr); | |||
| std::shared_ptr<TensorOperation> decode = vision::Decode(true); | |||
| EXPECT_NE(decode, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); | |||
| ds = ds->Map({decode}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -139,37 +115,34 @@ TEST_F(MindDataTestPipeline, TestRandomFlip) { | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| TEST_F(MindDataTestPipeline, TestHwcToChw) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 5; | |||
| ds = ds->Batch(batch_size); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> one_hot_op = vision::OneHot(10); | |||
| EXPECT_NE(one_hot_op, nullptr); | |||
| std::shared_ptr<TensorOperation> channel_swap = vision::HWC2CHW(); | |||
| EXPECT_NE(channel_swap, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| ds = ds->Map({channel_swap}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(0.5); | |||
| EXPECT_NE(mixup_batch_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({mixup_batch_op}, {"image", "label"}); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -186,16 +159,18 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // check if the image is in NCHW | |||
| EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] | |||
| && 2268 == image->shape()[2] && 4032 == image->shape()[3], true); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 2); | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| @@ -214,7 +189,30 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(-1); | |||
| EXPECT_EQ(mixup_batch_op, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 5; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> one_hot_op = vision::OneHot(10); | |||
| EXPECT_NE(one_hot_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(0.5); | |||
| EXPECT_NE(mixup_batch_op, nullptr); | |||
| // Create a Map operation on ds | |||
| @@ -244,7 +242,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| @@ -263,38 +261,11 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(-1); | |||
| EXPECT_EQ(mixup_batch_op, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestPad) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric); | |||
| EXPECT_NE(pad_op1, nullptr); | |||
| std::shared_ptr<TensorOperation> pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge); | |||
| EXPECT_NE(pad_op2, nullptr); | |||
| std::shared_ptr<TensorOperation> pad_op3 = vision::Pad({1, 4}); | |||
| EXPECT_NE(pad_op3, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(); | |||
| EXPECT_NE(mixup_batch_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({pad_op1, pad_op2, pad_op3}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| ds = ds->Map({mixup_batch_op}, {"image", "label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| @@ -314,13 +285,13 @@ TEST_F(MindDataTestPipeline, TestPad) { | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestCutOut) { | |||
| TEST_F(MindDataTestPipeline, TestNormalize) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| @@ -332,14 +303,11 @@ TEST_F(MindDataTestPipeline, TestCutOut) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> cut_out1 = vision::CutOut(30, 5); | |||
| EXPECT_NE(cut_out1, nullptr); | |||
| std::shared_ptr<TensorOperation> cut_out2 = vision::CutOut(30); | |||
| EXPECT_NE(cut_out2, nullptr); | |||
| std::shared_ptr<TensorOperation> normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}); | |||
| EXPECT_NE(normalize, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({cut_out1, cut_out2}); | |||
| ds = ds->Map({normalize}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -370,7 +338,7 @@ TEST_F(MindDataTestPipeline, TestCutOut) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestNormalize) { | |||
| TEST_F(MindDataTestPipeline, TestPad) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| @@ -382,11 +350,17 @@ TEST_F(MindDataTestPipeline, TestNormalize) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}); | |||
| EXPECT_NE(normalize, nullptr); | |||
| std::shared_ptr<TensorOperation> pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric); | |||
| EXPECT_NE(pad_op1, nullptr); | |||
| std::shared_ptr<TensorOperation> pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge); | |||
| EXPECT_NE(pad_op2, nullptr); | |||
| std::shared_ptr<TensorOperation> pad_op3 = vision::Pad({1, 4}); | |||
| EXPECT_NE(pad_op3, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({normalize}); | |||
| ds = ds->Map({pad_op1, pad_op2, pad_op3}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -405,10 +379,10 @@ TEST_F(MindDataTestPipeline, TestNormalize) { | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| @@ -417,10 +391,26 @@ TEST_F(MindDataTestPipeline, TestNormalize) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestDecode) { | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineFail) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid params."; | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}, {}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for translate | |||
| affine = vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for shear | |||
| affine = vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default params."; | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| @@ -429,11 +419,12 @@ TEST_F(MindDataTestPipeline, TestDecode) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> decode = vision::Decode(true); | |||
| EXPECT_NE(decode, nullptr); | |||
| std::shared_ptr<TensorOperation> affine = | |||
| vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({decode}); | |||
| ds = ds->Map({affine}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -457,13 +448,16 @@ TEST_F(MindDataTestPipeline, TestDecode) { | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestHwcToChw) { | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default params."; | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| @@ -475,11 +469,11 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> channel_swap = vision::HWC2CHW(); | |||
| EXPECT_NE(channel_swap, nullptr); | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({channel_swap}); | |||
| ds = ds->Map({affine}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -501,11 +495,9 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| // check if the image is in NCHW | |||
| EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] | |||
| && 2268 == image->shape()[2] && 4032 == image->shape()[3], true); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| @@ -628,9 +620,7 @@ TEST_F(MindDataTestPipeline, TestRandomSharpness) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default params."; | |||
| TEST_F(MindDataTestPipeline, TestRandomFlip) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| @@ -642,12 +632,14 @@ TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = | |||
| vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5); | |||
| EXPECT_NE(random_vertical_flip_op, nullptr); | |||
| std::shared_ptr<TensorOperation> random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5); | |||
| EXPECT_NE(random_horizontal_flip_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({affine}); | |||
| ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -678,9 +670,7 @@ TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default params."; | |||
| TEST_F(MindDataTestPipeline, TestRandomRotation) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| @@ -692,11 +682,11 @@ TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| std::shared_ptr<TensorOperation> random_rotation_op = vision::RandomRotation({-180, 180}); | |||
| EXPECT_NE(random_rotation_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({affine}); | |||
| ds = ds->Map({random_rotation_op}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| @@ -727,42 +717,32 @@ TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineFail) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid params."; | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}, {}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for translate | |||
| affine = vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for shear | |||
| affine = vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomRotation) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { | |||
| // Create a Mnist Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testMnistData/"; | |||
| std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| int32_t repeat_num = 1; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> random_rotation_op = vision::RandomRotation({-180, 180}); | |||
| EXPECT_NE(random_rotation_op, nullptr); | |||
| std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30}); | |||
| EXPECT_NE(resize_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({random_rotation_op}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> random_crop_op = vision::RandomCrop({28, 28}); | |||
| EXPECT_NE(random_crop_op, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16}); | |||
| EXPECT_NE(center_crop_op, nullptr); | |||
| std::shared_ptr<TensorOperation> uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2); | |||
| EXPECT_NE(uniform_aug_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({resize_op, uniform_aug_op}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||