| @@ -226,7 +226,16 @@ int NPUFusionPass::FormatFusion(kernel::LiteKernel *kernel) { | |||
| } | |||
| RemoveAndFreeKernel(trans_kernel); | |||
| } | |||
| pre_kernel->set_out_kernels(pre_insert_kernels); | |||
| auto pre_out_kernels = pre_kernel->out_kernels(); | |||
| size_t index = 0; | |||
| for (; index < pre_out_kernels.size(); index++) { | |||
| if (pre_out_kernels[index] == kernel) { | |||
| pre_out_kernels.erase(pre_out_kernels.begin() + index); | |||
| break; | |||
| } | |||
| } | |||
| pre_out_kernels.insert(pre_out_kernels.begin() + index, pre_insert_kernels.begin(), pre_insert_kernels.end()); | |||
| pre_kernel->set_out_kernels(pre_out_kernels); | |||
| RemoveAndFreeKernel(kernel); | |||
| return RET_OK; | |||
| } | |||
| @@ -62,10 +62,10 @@ int InstanceNormRun(void *cdata, int task_id) { | |||
| } | |||
| int InstanceNormCPUKernel::Run() { | |||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); | |||
| gamma_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); | |||
| beta_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData()); | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->data_c()); | |||
| gamma_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->data_c()); | |||
| beta_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->data_c()); | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->data_c()); | |||
| auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "InstanceNormRun error error_code[" << ret << "]"; | |||
| @@ -83,10 +83,11 @@ int LayerNormRun(void *cdata, int task_id) { | |||
| } | |||
| int LayerNormCPUKernel::Run() { | |||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); | |||
| gamma_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); | |||
| beta_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData()); | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->data_c()); | |||
| gamma_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->data_c()); | |||
| beta_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->data_c()); | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->data_c()); | |||
| auto ret = ParallelLaunch(this->context_->thread_pool_, LayerNormRun, this, op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "LayerNormRun error error_code[" << ret << "]"; | |||
| @@ -123,8 +123,8 @@ int LayerNormInt8Run(void *cdata, int task_id) { | |||
| } | |||
| int LayerNormInt8CPUKernel::Run() { | |||
| src_ptr_ = reinterpret_cast<int8_t *>(in_tensors_.at(0)->MutableData()); | |||
| dst_ptr_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData()); | |||
| src_ptr_ = reinterpret_cast<int8_t *>(in_tensors_.at(0)->data_c()); | |||
| dst_ptr_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->data_c()); | |||
| auto ret = ParallelLaunch(this->context_->thread_pool_, LayerNormInt8Run, this, op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| @@ -0,0 +1,89 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/npu/instance_norm_npu.h" | |||
| #include <memory> | |||
| #include "src/kernel_registry.h" | |||
| #include "src/runtime/agent/npu/npu_converter_utils.h" | |||
| using mindspore::kernel::KERNEL_ARCH::kNPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::schema::PrimitiveType_InstanceNorm; | |||
| namespace mindspore::kernel { | |||
| int LayerNormNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||
| OpParameter *opParameter) { | |||
| return RET_OK; | |||
| } | |||
| int LayerNormNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, | |||
| const std::vector<ge::Operator *> &npu_inputs) { | |||
| op_ = new (std::nothrow) hiai::op::InstanceNorm(name_); | |||
| if (op_ == nullptr) { | |||
| MS_LOG(ERROR) << "New layer norm npu operator for op " << name_ << " failed."; | |||
| return RET_ERROR; | |||
| } | |||
| op_->set_input_x(*npu_inputs[0]); | |||
| auto gamma = new (std::nothrow) hiai::op::Const(name_ + "_gamma"); | |||
| if (gamma == nullptr) { | |||
| MS_LOG(ERROR) << "New gamma const failed."; | |||
| return RET_ERROR; | |||
| } | |||
| auto gamma_shape = inputs[1]->shape(); | |||
| std::shared_ptr<ge::Tensor> gamma_tensor = std::shared_ptr<ge::Tensor>(new (std::nothrow) ge::Tensor()); | |||
| if (gamma_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new gamma_tensor failed."; | |||
| return RET_ERROR; | |||
| } | |||
| ge::TensorDesc gamma_tensor_desc(lite::ConverterToNPUShape({1, gamma_shape[0], 1, 1}), ge::FORMAT_NCHW, | |||
| lite::ConverterToNPUDataType(inputs[1]->data_type())); | |||
| gamma_tensor->SetTensorDesc(gamma_tensor_desc); | |||
| gamma_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs.data()), inputs[1]->Size()); | |||
| op_->set_input_gamma(*gamma); | |||
| auto beta = new (std::nothrow) hiai::op::Const(name_ + "_beta"); | |||
| if (beta == nullptr) { | |||
| MS_LOG(ERROR) << "New beta const failed."; | |||
| return RET_ERROR; | |||
| } | |||
| auto beta_shape = inputs[1]->shape(); | |||
| std::shared_ptr<ge::Tensor> beta_tensor = std::shared_ptr<ge::Tensor>(new (std::nothrow) ge::Tensor()); | |||
| if (beta_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new beta_tensor failed."; | |||
| return RET_ERROR; | |||
| } | |||
| ge::TensorDesc beta_tensor_desc(lite::ConverterToNPUShape({1, beta_shape[0], 1, 1}), ge::FORMAT_NCHW, | |||
| lite::ConverterToNPUDataType(inputs[1]->data_type())); | |||
| beta_tensor->SetTensorDesc(beta_tensor_desc); | |||
| beta_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs.data()), inputs[1]->Size()); | |||
| op_->set_input_beta(*beta); | |||
| op_->set_attr_epsilon(layer_norm_param_->epsilon_); | |||
| return RET_OK; | |||
| } | |||
| ge::Operator *mindspore::kernel::LayerNormNPUKernel::GetNPUOp() { return this->op_; } | |||
| LayerNormNPUKernel::~LayerNormNPUKernel() { | |||
| if (op_ != nullptr) { | |||
| delete op_; | |||
| op_ = nullptr; | |||
| } | |||
| } | |||
| REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, NPUKernelCreator<LayerNormNPUKernel>) | |||
| } // namespace mindspore::kernel | |||
| @@ -0,0 +1,45 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_LAYER_NORM_NPU_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_LAYER_NORM_NPU_H_ | |||
| #include <vector> | |||
| #include "nnacl/layer_norm_parameter.h" | |||
| #include "src/runtime/kernel/npu/npu_kernel.h" | |||
| #include "include/graph/op/all_ops.h" | |||
| namespace mindspore::kernel { | |||
| class LayerNormNPUKernel : public NPUKernel { | |||
| public: | |||
| LayerNormNPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : NPUKernel(parameter, inputs, outputs, ctx, primitive) { | |||
| layer_norm_param_ = reinterpret_cast<LayerNormParameter *>(parameter); | |||
| } | |||
| ~LayerNormNPUKernel() override; | |||
| int IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||
| OpParameter *opParameter) override; | |||
| int SetNPUInputs(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||
| const std::vector<ge::Operator *> &npu_inputs) override; | |||
| ge::Operator *GetNPUOp() override; | |||
| private: | |||
| hiai::op::InstanceNorm *op_ = nullptr; | |||
| LayerNormParameter *layer_norm_param_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_LAYER_NORM_NPU_H_ | |||
| @@ -42,4 +42,4 @@ class ScaleNPUKernel : public NPUKernel { | |||
| ScaleParameter *scale_parameter_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_Scale_NPU_H_ | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_SCALE_NPU_H_ | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||