|
|
@@ -38,3 +38,9 @@ def test_broadcast(): |
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np)) |
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np)) |
|
|
expect = np.broadcast_to(x1_np, shape) |
|
|
expect = np.broadcast_to(x1_np, shape) |
|
|
assert np.allclose(output.asnumpy(), expect) |
|
|
assert np.allclose(output.asnumpy(), expect) |
|
|
|
|
|
|
|
|
|
|
|
x1_np = np.random.rand(4, 5).astype(np.float32) |
|
|
|
|
|
shape = (2, 3, 4, 5) |
|
|
|
|
|
output = P.BroadcastTo(shape)(Tensor(x1_np)) |
|
|
|
|
|
expect = np.broadcast_to(x1_np, shape) |
|
|
|
|
|
assert np.allclose(output.asnumpy(), expect) |