|
|
|
@@ -964,7 +964,7 @@ class BertModelCLS(nn.Cell): |
|
|
|
The returned output represents the final logits as the results of log_softmax is propotional to that of softmax. |
|
|
|
""" |
|
|
|
def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, |
|
|
|
use_one_hot_embeddings=False, phase_type="teacher"): |
|
|
|
use_one_hot_embeddings=False, phase_type="student"): |
|
|
|
super(BertModelCLS, self).__init__() |
|
|
|
self.bert = BertModel(config, is_training, use_one_hot_embeddings) |
|
|
|
self.cast = P.Cast() |
|
|
|
@@ -992,4 +992,6 @@ class BertModelCLS(nn.Cell): |
|
|
|
logits = self.dense_1(cls) |
|
|
|
logits = self.cast(logits, self.dtype) |
|
|
|
log_probs = self.log_softmax(logits) |
|
|
|
return seq_output, att_output, logits, log_probs |
|
|
|
if self._phase == 'train' or self.phase_type == "teacher": |
|
|
|
return seq_output, att_output, logits, log_probs |
|
|
|
return log_probs |