|
|
@@ -24,11 +24,14 @@ from mindspore.common import dtype as mstype |
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_vargs_expand(): |
|
|
def test_net_vargs_expand(): |
|
|
class AddNet(Cell): |
|
|
class AddNet(Cell): |
|
|
def __init__(self): |
|
|
def __init__(self): |
|
|
super(AddNet, self).__init__() |
|
|
super(AddNet, self).__init__() |
|
|
self.w = Parameter(Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True) |
|
|
|
|
|
|
|
|
self.w = Parameter( |
|
|
|
|
|
Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True) |
|
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
def construct(self, x, y): |
|
|
return x + y |
|
|
return x + y |
|
|
x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) |
|
|
x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) |
|
|
@@ -37,22 +40,59 @@ def test_net_vargs_expand(): |
|
|
net = AddNet() |
|
|
net = AddNet() |
|
|
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens) |
|
|
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VarNet(Cell): |
|
|
class VarNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(VarNet, self).__init__() |
|
|
super(VarNet, self).__init__() |
|
|
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) |
|
|
|
|
|
self.w = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True) |
|
|
|
|
|
|
|
|
self.b = Parameter( |
|
|
|
|
|
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) |
|
|
|
|
|
self.w = Parameter( |
|
|
|
|
|
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *args): |
|
|
def construct(self, *args): |
|
|
return self.net(*args)*self.w + self.b |
|
|
return self.net(*args)*self.w + self.b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SecondNet(Cell): |
|
|
class SecondNet(Cell): |
|
|
def __init__(self): |
|
|
def __init__(self): |
|
|
super(SecondNet, self).__init__() |
|
|
super(SecondNet, self).__init__() |
|
|
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) |
|
|
|
|
|
|
|
|
self.b2 = Parameter( |
|
|
|
|
|
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) |
|
|
|
|
|
|
|
|
def construct(self, *args): |
|
|
def construct(self, *args): |
|
|
res = args[0] + args[1] |
|
|
res = args[0] + args[1] |
|
|
return res + self.b2 |
|
|
return res + self.b2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Bprop(Cell): |
|
|
|
|
|
def __init__(self, func, wrt_params, params, grad_op, sens=None): |
|
|
|
|
|
super(Bprop, self).__init__(auto_prefix=False) |
|
|
|
|
|
self.func = func |
|
|
|
|
|
self.wrt_params = wrt_params |
|
|
|
|
|
self.params = None |
|
|
|
|
|
if self.wrt_params and params: |
|
|
|
|
|
self.params = ParameterTuple(params) |
|
|
|
|
|
self.grad = grad_op |
|
|
|
|
|
self.with_sens = False |
|
|
|
|
|
self.sens = sens |
|
|
|
|
|
if sens: |
|
|
|
|
|
self.sens = Tensor(sens, dtype=mstype.float32) |
|
|
|
|
|
self.with_sens = True |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
|
|
|
# pylint: disable=no-else-return |
|
|
|
|
|
if self.wrt_params: |
|
|
|
|
|
if self.with_sens: |
|
|
|
|
|
return self.grad(self.func, self.params)(*inputs, self.sens) |
|
|
|
|
|
else: |
|
|
|
|
|
return self.grad(self.func, self.params)(*inputs) |
|
|
|
|
|
elif self.with_sens: |
|
|
|
|
|
return self.grad(self.func)(*inputs, self.sens) |
|
|
|
|
|
else: |
|
|
|
|
|
return self.grad(self.func)(*inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_all_var_args_grad_with_sens(): |
|
|
def test_all_var_args_grad_with_sens(): |
|
|
""""test grad_by_list_with_sens with all var args input""" |
|
|
""""test grad_by_list_with_sens with all var args input""" |
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
@@ -60,6 +100,7 @@ def test_all_var_args_grad_with_sens(): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
def construct(self, *inputs): |
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs) |
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -69,12 +110,14 @@ def test_all_var_args_grad_with_sens(): |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y, sens) |
|
|
out = grad_net(x, y, sens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_list_var_args(): |
|
|
def test_grad_list_var_args(): |
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
def construct(self, *inputs): |
|
|
return C.grad_by_list(self.net, self.weights)(*inputs) |
|
|
return C.grad_by_list(self.net, self.weights)(*inputs) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -83,12 +126,14 @@ def test_grad_list_var_args(): |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y) |
|
|
out = grad_net(x, y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_all_var_args(): |
|
|
def test_grad_all_var_args(): |
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
def construct(self, *inputs): |
|
|
return C.grad_all(self.net)(*inputs) |
|
|
return C.grad_all(self.net)(*inputs) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -97,12 +142,14 @@ def test_grad_all_var_args(): |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y) |
|
|
out = grad_net(x, y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_all_var_args_with_sens(): |
|
|
def test_grad_all_var_args_with_sens(): |
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
def construct(self, *inputs): |
|
|
return C.grad_all_with_sens(self.net)(*inputs) |
|
|
return C.grad_all_with_sens(self.net)(*inputs) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -112,12 +159,14 @@ def test_grad_all_var_args_with_sens(): |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y, sens) |
|
|
out = grad_net(x, y, sens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_var_args_with_sens(): |
|
|
def test_grad_var_args_with_sens(): |
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
def construct(self, *inputs): |
|
|
return C.grad_with_sens(self.net)(*inputs) |
|
|
return C.grad_with_sens(self.net)(*inputs) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -127,27 +176,34 @@ def test_grad_var_args_with_sens(): |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y, sens) |
|
|
out = grad_net(x, y, sens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_var_args_grad(): |
|
|
def test_var_args_grad(): |
|
|
class VarNet(Cell): |
|
|
class VarNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(VarNet, self).__init__() |
|
|
super(VarNet, self).__init__() |
|
|
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) |
|
|
|
|
|
|
|
|
self.b = Parameter( |
|
|
|
|
|
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, *args): |
|
|
def construct(self, *args): |
|
|
return self.net(*args) + self.b |
|
|
return self.net(*args) + self.b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SecondNet(Cell): |
|
|
class SecondNet(Cell): |
|
|
def __init__(self): |
|
|
def __init__(self): |
|
|
super(SecondNet, self).__init__() |
|
|
super(SecondNet, self).__init__() |
|
|
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) |
|
|
|
|
|
|
|
|
self.b2 = Parameter( |
|
|
|
|
|
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) |
|
|
|
|
|
|
|
|
def construct(self, *args): |
|
|
def construct(self, *args): |
|
|
res = args[0] + args[1] |
|
|
res = args[0] + args[1] |
|
|
return res + self.b2 |
|
|
return res + self.b2 |
|
|
|
|
|
|
|
|
class GradNet(Cell): |
|
|
class GradNet(Cell): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.net = net |
|
|
self.net = net |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
|
|
|
|
|
|
def construct(self, x, y, sens): |
|
|
def construct(self, x, y, sens): |
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens) |
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -164,12 +220,14 @@ def test_var_args_positional(): |
|
|
def __init__(self, net): |
|
|
def __init__(self, net): |
|
|
super(VarNet, self).__init__() |
|
|
super(VarNet, self).__init__() |
|
|
self.net = net |
|
|
self.net = net |
|
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
def construct(self, x, y): |
|
|
return self.net(x, y)*x |
|
|
return self.net(x, y)*x |
|
|
|
|
|
|
|
|
class SecondNet(Cell): |
|
|
class SecondNet(Cell): |
|
|
def __init__(self): |
|
|
def __init__(self): |
|
|
super(SecondNet, self).__init__() |
|
|
super(SecondNet, self).__init__() |
|
|
|
|
|
|
|
|
def construct(self, *args): |
|
|
def construct(self, *args): |
|
|
return args[0] + args[1] |
|
|
return args[0] + args[1] |
|
|
|
|
|
|
|
|
@@ -178,6 +236,7 @@ def test_var_args_positional(): |
|
|
super(GradNet, self).__init__() |
|
|
super(GradNet, self).__init__() |
|
|
self.net = net |
|
|
self.net = net |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
def construct(self, x, y): |
|
|
return C.grad_all(self.net)(x, y) |
|
|
return C.grad_all(self.net)(x, y) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
@@ -185,3 +244,71 @@ def test_var_args_positional(): |
|
|
net = VarNet(SecondNet()) |
|
|
net = VarNet(SecondNet()) |
|
|
grad_net = GradNet(net) |
|
|
grad_net = GradNet(net) |
|
|
out = grad_net(x, y) |
|
|
out = grad_net(x, y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_within_if_else(): |
|
|
|
|
|
class GradNet(Cell): |
|
|
|
|
|
def __init__(self, net): |
|
|
|
|
|
super(GradNet, self).__init__() |
|
|
|
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
|
|
|
self.net = net |
|
|
|
|
|
grad_op = C.GradOperation( |
|
|
|
|
|
name='grad', get_all=False, get_by_list=True, sens_param=True) |
|
|
|
|
|
self.grad = Bprop(self.net, True, self.weights, grad_op, 1.0) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
|
|
|
return self.grad(*inputs) |
|
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) |
|
|
|
|
|
sens = Tensor(1.0, dtype=mstype.float32) |
|
|
|
|
|
net = VarNet(SecondNet()) |
|
|
|
|
|
grad_net = GradNet(net) |
|
|
|
|
|
out = grad_net(x, y) |
|
|
|
|
|
print("test_grad_var_args_with_sens out=", out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_grad_for_concat(): |
|
|
|
|
|
class GradNet(Cell): |
|
|
|
|
|
def __init__(self, net): |
|
|
|
|
|
super(GradNet, self).__init__() |
|
|
|
|
|
self.weights = ParameterTuple(net.trainable_params()) |
|
|
|
|
|
self.net = net |
|
|
|
|
|
grad_op = C.GradOperation( |
|
|
|
|
|
name='grad', get_all=True, get_by_list=False, sens_param=True) |
|
|
|
|
|
self.grad = Bprop(self.net, False, self.weights, grad_op) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, *inputs): |
|
|
|
|
|
return self.grad(*inputs) |
|
|
|
|
|
|
|
|
|
|
|
class Concat(Cell): |
|
|
|
|
|
def __init__(self, axis): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
self.concat = P.Concat(axis=axis) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, *input1): |
|
|
|
|
|
return self.concat(input1) |
|
|
|
|
|
|
|
|
|
|
|
class ConcatFactory: |
|
|
|
|
|
def __init__(self, input_shape, axis, dtype=np.float32): |
|
|
|
|
|
super(ConcatFactory, self).__init__() |
|
|
|
|
|
self.inputs_np = [] |
|
|
|
|
|
for s in input_shape: |
|
|
|
|
|
self.inputs_np.append(np.random.randn(*s).astype(dtype)) |
|
|
|
|
|
self.axis = axis |
|
|
|
|
|
self.out_numpy = np.concatenate(self.inputs_np, axis=self.axis) |
|
|
|
|
|
self.out_grad_np = self.out_numpy |
|
|
|
|
|
|
|
|
|
|
|
def grad_mindspore_impl(self): |
|
|
|
|
|
inputs = [] |
|
|
|
|
|
for i in self.inputs_np: |
|
|
|
|
|
inputs.append(Tensor(i)) |
|
|
|
|
|
net = Concat(axis=self.axis) |
|
|
|
|
|
grad_net = GradNet(net) |
|
|
|
|
|
grad_net.set_train() |
|
|
|
|
|
input_grad = grad_net(*inputs, Tensor(self.out_grad_np)) |
|
|
|
|
|
|
|
|
|
|
|
def grad_cmp(self): |
|
|
|
|
|
input_grad_mindspore = self.grad_mindspore_impl() |
|
|
|
|
|
fact = ConcatFactory(input_shape=( |
|
|
|
|
|
(2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1) |
|
|
|
|
|
fact.grad_cmp() |