diff --git a/mindspore/dataset/engine/datasets.py b/mindspore/dataset/engine/datasets.py index dff443dc1e..1e16b5161e 100644 --- a/mindspore/dataset/engine/datasets.py +++ b/mindspore/dataset/engine/datasets.py @@ -2494,8 +2494,7 @@ class GeneratorDataset(SourceDataset): shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required. (default=None, expected order behavior shown in the table). sampler (Sampler/Iterable, optional): Object used to choose samples from the dataset. Random accessible input is - required. - (default=None, expected order behavior shown in the table). + required (default=None, expected order behavior shown in the table). num_shards (int, optional): Number of shards that the dataset should be divided into (default=None). This argument should be specified only when 'num_samples' is "None". Random accessible input is required. shard_id (int, optional): The shard ID within num_shards (default=None). This argument should be specified only diff --git a/mindspore/dataset/transforms/vision/c_transforms.py b/mindspore/dataset/transforms/vision/c_transforms.py index 07011b1d53..1b495ffe92 100644 --- a/mindspore/dataset/transforms/vision/c_transforms.py +++ b/mindspore/dataset/transforms/vision/c_transforms.py @@ -89,8 +89,8 @@ class Normalize(cde.NormalizeOp): Normalize the input image with respect to mean and standard deviation. Args: - mean (list): List of mean values for each channel, w.r.t channel order. - std (list): List of standard deviations for each channel, w.r.t. channel order. + mean (sequence): List or tuple of mean values for each channel, w.r.t channel order. + std (sequence): List or tuple of standard deviations for each channel, w.r.t. channel order. """ @check_normalize_c @@ -109,6 +109,7 @@ class RandomCrop(cde.RandomCropOp): If size is an int, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width). padding (int or sequence, optional): The number of pixels to pad the image (default=None). + If padding is not None, pad image firstly with padding values. If a single number is provided, it pads all borders with this value. If a tuple or list of 2 values are provided, it pads the (left and top) with the first value and (right and bottom) with the second value. diff --git a/mindspore/dataset/transforms/vision/py_transforms.py b/mindspore/dataset/transforms/vision/py_transforms.py index 51bea80b21..de9ce3f450 100644 --- a/mindspore/dataset/transforms/vision/py_transforms.py +++ b/mindspore/dataset/transforms/vision/py_transforms.py @@ -225,8 +225,8 @@ class Normalize: The values of the array need to be in range [0.0, 1.0]. Args: - mean (list): List of mean values for each channel, w.r.t channel order. - std (list): List of standard deviations for each channel, w.r.t. channel order. + mean (sequence): List or tuple of mean values for each channel, w.r.t channel order. + std (sequence): List or tuple of standard deviations for each channel, w.r.t. channel order. Examples: >>> py_transforms.ComposeOp([py_transforms.Decode(), @@ -262,6 +262,7 @@ class RandomCrop: If size is an int, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width). padding (int or sequence, optional): The number of pixels to pad the image (default=None). + If padding is not None, pad image firstly with padding values. If a single number is provided, it pads all borders with this value. If a tuple or list of 2 values are provided, it pads the (left and top) with the first value and (right and bottom) with the second value.