Merge pull request !1343 from jinyaohui/pylint1tags/v0.3.0-alpha
| @@ -21,7 +21,6 @@ from mindspore import context | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from ..mindspore_test import mindspore_test | from ..mindspore_test import mindspore_test | ||||
| from ..pipeline.gradient.compare_gradient import pipeline_for_compare_inputs_grad_with_npy_for_case_by_case_config | from ..pipeline.gradient.compare_gradient import pipeline_for_compare_inputs_grad_with_npy_for_case_by_case_config | ||||
| from ...vm_impl import * | |||||
| verification_set = [ | verification_set = [ | ||||
| ('MatMul', { | ('MatMul', { | ||||
| @@ -13,15 +13,15 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common.api import ms_function | |||||
| import numpy as np | import numpy as np | ||||
| import pytest | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| from mindspore.common.api import ms_function | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | ||||
| @@ -54,5 +54,6 @@ def test_slice(): | |||||
| print("output:\n", output) | print("output:\n", output) | ||||
| assert (output.asnumpy() == expect).all() | assert (output.asnumpy() == expect).all() | ||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| test_slice() | |||||
| test_slice() | |||||
| @@ -13,13 +13,14 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| import mindspore.nn as nn | |||||
| import numpy as np | import numpy as np | ||||
| import pytest | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | ||||
| @@ -45,6 +46,6 @@ def test_slice(): | |||||
| print("output:\n", output) | print("output:\n", output) | ||||
| assert (output.asnumpy() == expect).all() | assert (output.asnumpy() == expect).all() | ||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| test_slice() | test_slice() | ||||
| @@ -12,15 +12,17 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | |||||
| import pytest | |||||
| from cus_add3 import CusAdd3 | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore.ops import composite as C | |||||
| from cus_add3 import CusAdd3 | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | ||||
| class Net(nn.Cell): | class Net(nn.Cell): | ||||
| """Net definition""" | """Net definition""" | ||||
| @@ -31,6 +33,7 @@ class Net(nn.Cell): | |||||
| def construct(self, input1, input2): | def construct(self, input1, input2): | ||||
| return self.add3(input1, input2) | return self.add3(input1, input2) | ||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_x86_ascend_training | @pytest.mark.platform_x86_ascend_training | ||||
| @pytest.mark.platform_arm_ascend_training | @pytest.mark.platform_arm_ascend_training | ||||
| @@ -41,4 +44,4 @@ def test_net(): | |||||
| add3_net = Net() | add3_net = Net() | ||||
| output = add3_net(Tensor(input1), Tensor(input2)) | output = add3_net(Tensor(input1), Tensor(input2)) | ||||
| expect = np.array([3.0, 7.0, 13.0]).astype(np.float32) | expect = np.array([3.0, 7.0, 13.0]).astype(np.float32) | ||||
| assert (output.asnumpy() == expect).all() | |||||
| assert (output.asnumpy() == expect).all() | |||||
| @@ -19,16 +19,14 @@ | |||||
| @Desc : parser class method function. | @Desc : parser class method function. | ||||
| """ | """ | ||||
| import logging | import logging | ||||
| import numpy as np | import numpy as np | ||||
| import sys | |||||
| from collections import * | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore.common.parameter import Parameter | from mindspore.common.parameter import Parameter | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.ops import Primitive, prim_attr_register | from mindspore.ops import Primitive, prim_attr_register | ||||
| from mindspore.ops import functional as F | from mindspore.ops import functional as F | ||||
| from mindspore.train.model import Model | |||||
| log = logging.getLogger("test") | log = logging.getLogger("test") | ||||
| log.setLevel(level=logging.ERROR) | log.setLevel(level=logging.ERROR) | ||||
| @@ -201,6 +201,7 @@ def get_resolve_fn(x, y): | |||||
| # Test:no return function | # Test:no return function | ||||
| # pylint: disable=pointless-statement | |||||
| def get_no_return_fn(x, y): | def get_no_return_fn(x, y): | ||||
| x + y | x + y | ||||
| @@ -339,6 +340,7 @@ def func_call(x, y, *var, a=0, b=1, **kwargs): | |||||
| return x + y + var[0] + a + b + kwargs["z"] | return x + y + var[0] + a + b + kwargs["z"] | ||||
| # pylint: disable=repeated-keyword | |||||
| def test_call_variable(): | def test_call_variable(): | ||||
| t = (1, 2, 3) | t = (1, 2, 3) | ||||
| d = {"z": 10, "e": 11} | d = {"z": 10, "e": 11} | ||||
| @@ -434,6 +434,7 @@ def test_batch_exception_11(): | |||||
| assert "drop_remainder" in str(e) | assert "drop_remainder" in str(e) | ||||
| # pylint: disable=redundant-keyword-arg | |||||
| def test_batch_exception_12(): | def test_batch_exception_12(): | ||||
| """ | """ | ||||
| Test batch exception: wrong input order, drop_remainder wrongly used as batch_size | Test batch exception: wrong input order, drop_remainder wrongly used as batch_size | ||||
| @@ -106,6 +106,7 @@ def test_center_crop_comp(height=375, width=375, plot=False): | |||||
| visualize(image, image_cropped) | visualize(image, image_cropped) | ||||
| # pylint: disable=unnecessary-lambda | |||||
| def test_crop_grayscale(height=375, width=375): | def test_crop_grayscale(height=375, width=375): | ||||
| """ | """ | ||||
| Test that centercrop works with pad and grayscale images | Test that centercrop works with pad and grayscale images | ||||
| @@ -19,7 +19,6 @@ import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| import mindspore.dataset.transforms.c_transforms as C | import mindspore.dataset.transforms.c_transforms as C | ||||
| import mindspore.dataset.transforms.vision.c_transforms as cde | import mindspore.dataset.transforms.vision.c_transforms as cde | ||||
| from mindspore import log as logger | |||||
| DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | ||||
| SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | ||||
| @@ -255,6 +254,7 @@ def filter_func_map(col1, col2): | |||||
| return False | return False | ||||
| # pylint: disable=simplifiable-if-statement | |||||
| def filter_func_map_part(col1): | def filter_func_map_part(col1): | ||||
| if col1 < 3: | if col1 < 3: | ||||
| return True | return True | ||||
| @@ -36,6 +36,7 @@ def normalize_np(image): | |||||
| return image | return image | ||||
| # pylint: disable=inconsistent-return-statements | |||||
| def get_normalized(image_id): | def get_normalized(image_id): | ||||
| """ | """ | ||||
| Reads the image using DE ops and then normalizes using Numpy | Reads the image using DE ops and then normalizes using Numpy | ||||
| @@ -13,10 +13,10 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================== | # ============================================================================== | ||||
| import numpy as np | import numpy as np | ||||
| import pytest | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| # Generate 1d int numpy array from 0 - 63 | # Generate 1d int numpy array from 0 - 63 | ||||
| def generator_1d(): | def generator_1d(): | ||||
| for i in range(64): | for i in range(64): | ||||
| @@ -33,7 +33,7 @@ def test_case_0(): | |||||
| data1 = data1.shuffle(2) | data1 = data1.shuffle(2) | ||||
| data1 = data1.map(["data"], operations=(lambda x : x)) | |||||
| data1 = data1.map(["data"], operations=(lambda x: x)) | |||||
| data1 = data1.batch(2) | data1 = data1.batch(2) | ||||
| @@ -43,4 +43,4 @@ def test_case_0(): | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| test_case_0() | |||||
| test_case_0() | |||||
| @@ -70,6 +70,7 @@ def test_pad_op(): | |||||
| assert mse < 0.01 | assert mse < 0.01 | ||||
| # pylint: disable=unnecessary-lambda | |||||
| def test_pad_grayscale(): | def test_pad_grayscale(): | ||||
| """ | """ | ||||
| Tests that the pad works for grayscale images | Tests that the pad works for grayscale images | ||||
| @@ -253,6 +253,7 @@ def test_random_color_adjust_op_hue(plot=False): | |||||
| visualize(c_image, mse, py_image) | visualize(c_image, mse, py_image) | ||||
| # pylint: disable=unnecessary-lambda | |||||
| def test_random_color_adjust_grayscale(): | def test_random_color_adjust_grayscale(): | ||||
| """ | """ | ||||
| Tests that the random color adjust works for grayscale images | Tests that the random color adjust works for grayscale images | ||||
| @@ -15,7 +15,6 @@ | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | |||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| @@ -19,6 +19,7 @@ import pytest | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| # pylint: disable=comparison-with-itself | |||||
| def test_basic(): | def test_basic(): | ||||
| x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S') | x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S') | ||||
| # x = np.array(["ab", "cde"], dtype='S') | # x = np.array(["ab", "cde"], dtype='S') | ||||
| @@ -137,16 +137,19 @@ def test_dict_set_or_get_item_3(): | |||||
| net = DictNet() | net = DictNet() | ||||
| assert net() == Tensor(np.ones([4, 2, 3], np.float32)) | assert net() == Tensor(np.ones([4, 2, 3], np.float32)) | ||||
| def test_dict_set_item(): | def test_dict_set_item(): | ||||
| class DictSetNet(Cell): | class DictSetNet(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super(DictSetNet, self).__init__() | super(DictSetNet, self).__init__() | ||||
| self.attrs = ("abc", "edf", "ghi", "jkl") | self.attrs = ("abc", "edf", "ghi", "jkl") | ||||
| def construct(self, x): | def construct(self, x): | ||||
| my_dict = {"def": x, "abc":x, "edf":x, "ghi":x, "jkl":x} | |||||
| my_dict = {"def": x, "abc": x, "edf": x, "ghi": x, "jkl": x} | |||||
| for i in range(len(self.attrs)): | for i in range(len(self.attrs)): | ||||
| my_dict[self.attrs[i]] = x - i | my_dict[self.attrs[i]] = x - i | ||||
| return my_dict["jkl"], my_dict["edf"] | return my_dict["jkl"], my_dict["edf"] | ||||
| x = Tensor(np.ones([2, 2, 3], np.float32)) | x = Tensor(np.ones([2, 2, 3], np.float32)) | ||||
| net = DictSetNet() | net = DictSetNet() | ||||
| out = net(x) | |||||
| out = net(x) | |||||
| @@ -12,12 +12,13 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| """test mnist to mindrecord tool""" | """test mnist to mindrecord tool""" | ||||
| import cv2 | |||||
| import gzip | import gzip | ||||
| import pytest | |||||
| import numpy as np | |||||
| import os | import os | ||||
| import cv2 | |||||
| import numpy as np | |||||
| import pytest | |||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| from mindspore.mindrecord import FileReader | from mindspore.mindrecord import FileReader | ||||
| from mindspore.mindrecord import MnistToMR | from mindspore.mindrecord import MnistToMR | ||||
| @@ -144,10 +145,10 @@ def test_mnist_to_mindrecord_compare_data(fixture_file): | |||||
| assert np.array(x['label']) == label | assert np.array(x['label']) == label | ||||
| reader.close() | reader.close() | ||||
| def test_mnist_to_mindrecord_multi_partition(fixture_file): | def test_mnist_to_mindrecord_multi_partition(fixture_file): | ||||
| """test transform mnist dataset to multiple mindrecord files.""" | """test transform mnist dataset to multiple mindrecord files.""" | ||||
| mnist_transformer = MnistToMR(MNIST_DIR, FILE_NAME, PARTITION_NUM) | mnist_transformer = MnistToMR(MNIST_DIR, FILE_NAME, PARTITION_NUM) | ||||
| mnist_transformer.transform() | mnist_transformer.transform() | ||||
| read("mnist_train.mindrecord0", "mnist_test.mindrecord0") | read("mnist_train.mindrecord0", "mnist_test.mindrecord0") | ||||
| @@ -1,3 +1,4 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | # Copyright 2020 Huawei Technologies Co., Ltd | ||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| @@ -13,8 +13,8 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ test control ops """ | """ test control ops """ | ||||
| import pytest | |||||
| import numpy as np | import numpy as np | ||||
| import pytest | |||||
| import mindspore as ms | import mindspore as ms | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| @@ -436,10 +436,11 @@ def test_index_to_switch_layer(): | |||||
| Tensor(np.full([128, 96], 0.6, dtype=np.float32))) | Tensor(np.full([128, 96], 0.6, dtype=np.float32))) | ||||
| C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32))) | C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32))) | ||||
| def test_control_depend_check(): | def test_control_depend_check(): | ||||
| with pytest.raises(TypeError) as e: | with pytest.raises(TypeError) as e: | ||||
| depend = P.ControlDepend(0.0) | depend = P.ControlDepend(0.0) | ||||
| with pytest.raises(ValueError) as e: | with pytest.raises(ValueError) as e: | ||||
| depend = P.ControlDepend(2) | depend = P.ControlDepend(2) | ||||
| with pytest.raises(TypeError) as e: | with pytest.raises(TypeError) as e: | ||||
| depend = P.ControlDepend((2,)) | |||||
| depend = P.ControlDepend((2,)) | |||||
| @@ -50,6 +50,7 @@ class Net(Cell): | |||||
| return x | return x | ||||
| # pylint: disable=comparison-with-itself | |||||
| class DropoutFactory: | class DropoutFactory: | ||||
| def __init__(self, input_shape, keep_prob, seed0, seed1, strategy0=None): | def __init__(self, input_shape, keep_prob, seed0, seed1, strategy0=None): | ||||
| size = 1 | size = 1 | ||||
| @@ -13,11 +13,12 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import numpy as np | import numpy as np | ||||
| import mindspore as ms | import mindspore as ms | ||||
| from mindspore import context, Tensor, Parameter | from mindspore import context, Tensor, Parameter | ||||
| from mindspore.nn import Cell, TrainOneStepCell, Momentum | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common.api import _executor | from mindspore.common.api import _executor | ||||
| from mindspore.nn import Cell | |||||
| from mindspore.ops import operations as P | |||||
| class Net(Cell): | class Net(Cell): | ||||
| @@ -42,7 +43,7 @@ class EvalNet(Cell): | |||||
| def construct(self, x, b): | def construct(self, x, b): | ||||
| out = self.network(x, b) | out = self.network(x, b) | ||||
| out = self.relu(out) | out = self.relu(out) | ||||
| return out | |||||
| return out | |||||
| _x = Tensor(np.ones([8, 8]), dtype=ms.float32) | _x = Tensor(np.ones([8, 8]), dtype=ms.float32) | ||||
| @@ -54,15 +55,15 @@ def test_train_and_eval(): | |||||
| context.set_context(save_graphs=True, mode=0) | context.set_context(save_graphs=True, mode=0) | ||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | ||||
| strategy1 = ((4, 4), (4, 4)) | strategy1 = ((4, 4), (4, 4)) | ||||
| strategy2 = ((4, 4), ) | |||||
| strategy2 = ((4, 4),) | |||||
| net = Net(_w1, strategy1, strategy2) | net = Net(_w1, strategy1, strategy2) | ||||
| eval_net = EvalNet(net, strategy2=strategy2) | eval_net = EvalNet(net, strategy2=strategy2) | ||||
| net.set_train() | net.set_train() | ||||
| net.set_auto_parallel() | net.set_auto_parallel() | ||||
| _executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True) | |||||
| _executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True) | |||||
| eval_net.set_train(mode=False) | eval_net.set_train(mode=False) | ||||
| eval_net.set_auto_parallel() | eval_net.set_auto_parallel() | ||||
| _executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True) | |||||
| _executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True) | |||||
| context.reset_auto_parallel_context() | |||||
| context.reset_auto_parallel_context() | |||||
| @@ -50,6 +50,7 @@ def test_parser_three_default_mixed_args_subnet(): | |||||
| assert net(tensor1, tensor2) == tensor1 | assert net(tensor1, tensor2) == tensor1 | ||||
| # pylint: disable=keyword-arg-before-vararg | |||||
| def test_net_vararg_kwonlyarg_kwarg(): | def test_net_vararg_kwonlyarg_kwarg(): | ||||
| class FirstNet(Cell): | class FirstNet(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| @@ -76,6 +77,7 @@ def test_net_vararg_kwonlyarg_kwarg(): | |||||
| net() | net() | ||||
| # pylint: disable=keyword-arg-before-vararg | |||||
| def test_net_vararg_normal_input(): | def test_net_vararg_normal_input(): | ||||
| class FirstNet(Cell): | class FirstNet(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| @@ -34,6 +34,7 @@ def run_test(netclass, count): | |||||
| # np.testing.assert_array_almost_equal(output_np, output_ms.asnumpy(), decimal=3) | # np.testing.assert_array_almost_equal(output_np, output_ms.asnumpy(), decimal=3) | ||||
| # pylint: disable=unnecessary-pass | |||||
| class for_loop_with_break(Cell): | class for_loop_with_break(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super().__init__() | super().__init__() | ||||
| @@ -70,7 +71,7 @@ class for_loop_with_continue(Cell): | |||||
| def test_for_loop_with_continue(): | def test_for_loop_with_continue(): | ||||
| run_test(for_loop_with_continue, 10) | run_test(for_loop_with_continue, 10) | ||||
| # pylint: disable=unnecessary-pass | |||||
| class for_loop_with_cont_break(Cell): | class for_loop_with_cont_break(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super().__init__() | super().__init__() | ||||
| @@ -38,6 +38,7 @@ def vm_impl_tensor_add(self): | |||||
| return vm_impl | return vm_impl | ||||
| # pylint: disable=used-before-assignment | |||||
| @vm_impl_getters.register(P.LogicalNot) | @vm_impl_getters.register(P.LogicalNot) | ||||
| def vm_impl_logical_not(self): | def vm_impl_logical_not(self): | ||||
| x = x.asnumpy() | x = x.asnumpy() | ||||