| @@ -26,7 +26,7 @@ namespace kernel { | |||
| template <typename T, typename S> | |||
| class UniqueGpuKernel : public GpuKernel { | |||
| public: | |||
| UniqueGpuKernel() : input_size_(0), output_size_(0), workspace_size_(0), num_elements_(1), post_output_size_(0) {} | |||
| UniqueGpuKernel() { ResetResource(); } | |||
| ~UniqueGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| @@ -48,7 +48,7 @@ class UniqueGpuKernel : public GpuKernel { | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| kernel_node_ = kernel_node; | |||
| std::vector<size_t> shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| std::vector<size_t> shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0); | |||
| for (auto x : shape) { | |||
| num_elements_ *= x; | |||
| } | |||
| @@ -77,6 +77,19 @@ class UniqueGpuKernel : public GpuKernel { | |||
| AnfAlgo::SetOutputInferTypeAndShape(type_ids, shapes, kernel_node_.get()); | |||
| } | |||
| void ResetResource() noexcept override { | |||
| input_size_ = 0; | |||
| output_size_ = 0; | |||
| workspace_size_ = 0; | |||
| num_elements_ = 1; | |||
| post_output_size_ = 0; | |||
| stream_ptr_ = nullptr; | |||
| kernel_node_ = nullptr; | |||
| input_size_list_.clear(); | |||
| output_size_list_.clear(); | |||
| workspace_size_list_.clear(); | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_); | |||
| @@ -164,7 +164,10 @@ AbstractBasePtr InferImplUnique(const AnalysisEnginePtr &, const PrimitivePtr &p | |||
| } | |||
| ShapeVector ids_shape = {Shape::SHP_ANY}; | |||
| ShapeVector min_shape = {1}; | |||
| ShapeVector max_shape = shape->shape(); | |||
| ShapeVector max_shape = shape->max_shape(); | |||
| if (max_shape.empty()) { | |||
| max_shape = shape->shape(); | |||
| } | |||
| auto ids = | |||
| std::make_shared<AbstractTensor>(input->element(), std::make_shared<Shape>(ids_shape, min_shape, max_shape)); | |||
| // Currently we choose the same data type as input for the idx. | |||
| @@ -174,7 +177,17 @@ AbstractBasePtr InferImplUnique(const AnalysisEnginePtr &, const PrimitivePtr &p | |||
| if (input->element()->GetTypeTrack()->type_id() == TypeId::kNumberTypeInt64) { | |||
| ids_idx_type = kInt64; | |||
| } | |||
| auto ids_idx = std::make_shared<AbstractTensor>(ids_idx_type, shape->shape()); | |||
| ShapeVector idx_shape = shape->shape(); | |||
| ShapeVector idx_min_shape = shape->min_shape(); | |||
| if (idx_min_shape.empty()) { | |||
| idx_min_shape = shape->shape(); | |||
| } | |||
| ShapeVector idx_max_shape = shape->max_shape(); | |||
| if (idx_max_shape.empty()) { | |||
| idx_max_shape = shape->shape(); | |||
| } | |||
| auto ids_idx = std::make_shared<AbstractTensor>(ids_idx_type, idx_shape); | |||
| ids_idx->set_shape(std::make_shared<Shape>(idx_shape, idx_min_shape, idx_max_shape)); | |||
| // outputs: ids, ids_idx | |||
| AbstractBasePtrList elements = {ids, ids_idx}; | |||
| return std::make_shared<AbstractTuple>(elements); | |||
| @@ -20,7 +20,7 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| class NetUnique(nn.Cell): | |||
| def __init__(self): | |||
| @@ -32,6 +32,20 @@ class NetUnique(nn.Cell): | |||
| return x_unique, x_idx | |||
| class NetUniqueDynamic(nn.Cell): | |||
| def __init__(self): | |||
| super(NetUniqueDynamic, self).__init__() | |||
| self.convert = inner.GpuConvertToDynamicShape() | |||
| self.unique = P.Unique() | |||
| self.split = P.Split(0, 2) | |||
| def construct(self, x): | |||
| x_convert = self.convert(x) | |||
| x_unique, x_idx = self.unique(x_convert) | |||
| x_split = self.split(x_unique) | |||
| return x_unique, x_idx, x_split | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| @@ -224,3 +238,32 @@ def test_unique_large_int32(): | |||
| x_unique, x_idx = net(x) | |||
| assert (x_unique.asnumpy() == exp_output).all() | |||
| assert (x_idx.asnumpy() == exp_idx).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_unique_dynamic(): | |||
| x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5, 6]).astype(np.float32)) | |||
| expt_unique = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) | |||
| expt_index = np.array([3, 4, 0, 1, 2, 2, 3, 4, 5]).astype(np.int32) | |||
| expt_split = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) | |||
| x2 = Tensor(np.array([1, 1, 4, 4, 7, 8, 8]).astype(np.float32)) | |||
| expt_unique2 = np.array([1, 4, 7, 8]).astype(np.float32) | |||
| expt_index2 = np.array([0, 0, 1, 1, 2, 3, 3]).astype(np.int32) | |||
| expt_split2 = np.array([[1, 4], [7, 8]]).astype(np.float32) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| net = NetUniqueDynamic() | |||
| x_unique, x_idx, x_split = net(x) | |||
| assert (x_unique.asnumpy() == expt_unique).all() | |||
| assert (x_idx.asnumpy() == expt_index).all() | |||
| for i, out in enumerate(x_split): | |||
| assert (out.asnumpy() == expt_split[i]).all() | |||
| x_unique2, x_idx2, x_split2 = net(x2) | |||
| assert (x_unique2.asnumpy() == expt_unique2).all() | |||
| assert (x_idx2.asnumpy() == expt_index2).all() | |||
| for i, out in enumerate(x_split2): | |||
| assert (out.asnumpy() == expt_split2[i]).all() | |||