From: @huangxinjing Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -910,6 +910,21 @@ double GatherV2PCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs, | |||
| return result; | |||
| } | |||
| double UniformCandidateSamplerCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs, | |||
| const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const { | |||
| double result = 0.0; | |||
| Shape input0_slice_shape = inputs[0].slice_shape(); | |||
| if (inputs_type_lengths_.size() != inputs.size()) { | |||
| MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size() | |||
| << " for UniformCandidateSampler cost"; | |||
| } | |||
| result = ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]); | |||
| return result; | |||
| } | |||
| double GatherV2PCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs, | |||
| const std::vector<TensorInfo> &outputs, int64_t stage_id) const { | |||
| double result = 0.0; | |||
| @@ -684,6 +684,38 @@ class UniqueCost : public OperatorCost { | |||
| using UniqueCostPtr = std::shared_ptr<UniqueCost>; | |||
| class UniformCandidateSamplerCost : public OperatorCost { | |||
| public: | |||
| explicit UniformCandidateSamplerCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {} | |||
| UniformCandidateSamplerCost() : OperatorCost(false) {} | |||
| ~UniformCandidateSamplerCost() override = default; | |||
| double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const override { | |||
| return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const override { | |||
| return 0; | |||
| } | |||
| double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const override { | |||
| return 0; | |||
| } | |||
| double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const override { | |||
| return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t stage_id) const override; | |||
| double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int64_t) const override { | |||
| return 0.0; | |||
| } | |||
| }; | |||
| using UniformCandidateSamplerCostPtr = std::shared_ptr<UniformCandidateSamplerCost>; | |||
| class GatherV2Cost : public OperatorCost { | |||
| public: | |||
| explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {} | |||
| @@ -176,6 +176,7 @@ REGISTER(ExpandDimsInfo); | |||
| REGISTER(SqueezeInfo); | |||
| REGISTER(SigmoidCrossEntropyWithLogitsInfo); | |||
| REGISTER(SquareInfo); | |||
| REGISTER(UniformCandidateSamplerInfo); | |||
| REGISTER(UnsortedSegmentSumInfo); | |||
| REGISTER(UnsortedSegmentMinInfo); | |||
| REGISTER(GatherV2PInfo); | |||
| @@ -47,6 +47,7 @@ | |||
| #include "frontend/parallel/ops_info/pack_info.h" | |||
| #include "frontend/parallel/ops_info/broadcast_to_info.h" | |||
| #include "frontend/parallel/ops_info/unique_info.h" | |||
| #include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h" | |||
| #include "frontend/parallel/ops_info/reluv2_info.h" | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | |||
| @@ -102,6 +102,12 @@ constexpr char END[] = "end"; | |||
| constexpr char STRIDES[] = "strides"; | |||
| constexpr char GROUP[] = "group"; | |||
| constexpr char FUSION[] = "fusion"; | |||
| constexpr char NUM_SAMPLED[] = "num_sampled"; | |||
| constexpr char NUM_TRUE[] = "num_true"; | |||
| constexpr char SEED[] = "seed"; | |||
| constexpr char RANGE_MAX[] = "range_max"; | |||
| constexpr char REMOVE_ACCIDENTAL_HITS[] = "remove_accidental_hits"; | |||
| constexpr char UNIQUE_STRING[] = "unique"; | |||
| constexpr char AXIS[] = "axis"; | |||
| constexpr char AXES[] = "axes"; | |||
| constexpr char START[] = "start"; | |||
| @@ -191,6 +197,7 @@ constexpr char DIV[] = "Div"; | |||
| constexpr char REAL_DIV[] = "RealDiv"; | |||
| constexpr char ASSIGN_SUB[] = "AssignSub"; | |||
| constexpr char GREATER[] = "Greater"; | |||
| constexpr char UNIFORM_CANDIDATE_SAMPLER[] = "UniformCandidateSampler"; | |||
| constexpr char VIRTUAL_DATA_SET[] = "_VirtualDataset"; | |||
| constexpr char VIRTUAL_DATA_SET_INFO[] = "VirtualDatasetInfo"; | |||
| constexpr char SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SparseSoftmaxCrossEntropyWithLogits"; | |||
| @@ -0,0 +1,316 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h" | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include "frontend/parallel/device_matrix.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| #include "frontend/parallel/tensor_layout/tensor_redistribution.h" | |||
| #include "frontend/parallel/graph_util/generate_graph.h" | |||
| #include "frontend/parallel/context.h" | |||
| #include "pipeline/jit/resource.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| Status UniformCandidateSamplerInfo::GetUniformSamplerAttrInt64(const std::string &args, int64_t *value) { | |||
| auto iter = attrs_.find(args); | |||
| if (iter == attrs_.end()) { | |||
| MS_LOG(ERROR) << name_ << ": Can not find the attr for " << args; | |||
| return FAILED; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(iter->second); | |||
| if (!iter->second->isa<Int64Imm>()) { | |||
| MS_LOG(ERROR) << name_ << ": The type of attr is not int, the attr is " << args; | |||
| return FAILED; | |||
| } | |||
| *value = iter->second->cast<Int64ImmPtr>()->value(); | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::GetUniformSamplerAttrBool(const std::string &args, bool *value) { | |||
| auto iter = attrs_.find(args); | |||
| if (iter == attrs_.end()) { | |||
| MS_LOG(ERROR) << name_ << ": Can not find the attr for " << args; | |||
| return FAILED; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(iter->second); | |||
| if (!iter->second->isa<BoolImm>()) { | |||
| MS_LOG(ERROR) << name_ << ": The type of attr is not bool, the attr is " << args; | |||
| return FAILED; | |||
| } | |||
| *value = iter->second->cast<BoolImmPtr>()->value(); | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::GetAttrs() { | |||
| if (GetUniformSamplerAttrInt64(NUM_TRUE, &num_true_) != SUCCESS || | |||
| GetUniformSamplerAttrInt64(NUM_SAMPLED, &num_sampled_) != SUCCESS || | |||
| GetUniformSamplerAttrBool(UNIQUE_STRING, &unique_) != SUCCESS || | |||
| GetUniformSamplerAttrInt64(RANGE_MAX, &range_max_) != SUCCESS || | |||
| GetUniformSamplerAttrInt64(SEED, &seed_) != SUCCESS || | |||
| GetUniformSamplerAttrBool(REMOVE_ACCIDENTAL_HITS, &remove_accidental_hits_) != SUCCESS) { | |||
| return FAILED; | |||
| } else { | |||
| MS_LOG(INFO) << name_ << ": The num_ture is " << num_true_ << " , the num_sampled is " << num_sampled_ | |||
| << ", the unique is " << unique_ << " , the range max is " << range_max_ << " , the seed is " << seed_ | |||
| << " , the remove_accidental_hits is " << remove_accidental_hits_; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| MS_EXCEPTION_IF_NULL(strategy); | |||
| if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy"; | |||
| return FAILED; | |||
| } | |||
| std::vector<Dimensions> stra = strategy->GetInputDim(); | |||
| if (stra.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The strategy is empty"; | |||
| return FAILED; | |||
| } | |||
| Dimensions input_strategy = stra.at(0); | |||
| if (remove_accidental_hits_) { | |||
| bool shard = std::any_of(input_strategy.begin(), input_strategy.end(), [](int64_t v) { return v > 1; }); | |||
| if (shard) { | |||
| MS_LOG(ERROR) << name_ << ": When remove accidental_hits is true, the operation only supports (1,1) shard."; | |||
| return FAILED; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::InferDevMatrixShape() { | |||
| MS_EXCEPTION_IF_NULL(strategy_); | |||
| std::vector<Dimensions> stra = strategy_->GetInputDim(); | |||
| if (stra.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The strategy is empty"; | |||
| return FAILED; | |||
| } | |||
| dev_matrix_shape_ = stra[0]; | |||
| return SUCCESS; | |||
| } | |||
| // There are three outputs | |||
| // sampled_candidates, true_expected_count, sampled_expected_count | |||
| // the sampled_candidates and sampled_expected_count is recomputed on each device with tensor map [-1] | |||
| // only true_expected_count is shard | |||
| Status UniformCandidateSamplerInfo::InferTensorMap() { | |||
| TensorMap tensor_map; | |||
| TensorMap sampled_tensor_map = {-1}; | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| int32_t size = SizeToInt(inputs_shape_[0].size()); | |||
| for (int i = 0; i < size; ++i) { | |||
| tensor_map.push_back(size - i - 1); | |||
| } | |||
| inputs_tensor_map_.push_back(tensor_map); | |||
| // Output 1 sampled_candidates | |||
| outputs_tensor_map_.push_back(sampled_tensor_map); | |||
| // Output 2 true_expected_count | |||
| outputs_tensor_map_.push_back(tensor_map); | |||
| // Output 3 sampled_expected_count | |||
| outputs_tensor_map_.push_back(sampled_tensor_map); | |||
| return SUCCESS; | |||
| } | |||
| // The UniformCandidateSampler is not supported to be the last op of the net | |||
| Status UniformCandidateSamplerInfo::InferAsLossDivisor() { | |||
| as_loss_divisor_ = 1; | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::InferMirrorOps() { | |||
| mirror_ops_.clear(); | |||
| if (inputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_tensor_map = inputs_tensor_map_[0]; | |||
| std::vector<Group> group; | |||
| if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Create group for input failed."; | |||
| return FAILED; | |||
| } | |||
| OperatorVector mirror_op; | |||
| if (group.empty()) { | |||
| MS_LOG(INFO) << name_ << ": The mirror group is empty."; | |||
| return SUCCESS; | |||
| } else { | |||
| mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum()); | |||
| mirror_ops_.push_back(mirror_op); | |||
| std::string group_name = group[0].name(); | |||
| MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::InferTensorInfo() { | |||
| if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid args"; | |||
| return FAILED; | |||
| } | |||
| TensorLayout input_layout, output_layout; | |||
| // infer tensor layout | |||
| if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo input_tensor_info(input_layout); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| for (size_t i = 0; i < outputs_shape_.size(); ++i) { | |||
| // infer tensor layout | |||
| if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[i], outputs_shape_[i]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo output_tensor_info(output_layout); | |||
| outputs_tensor_info_.push_back(output_tensor_info); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { | |||
| return SetCostUnderStrategyBase(strategy); | |||
| } | |||
| Status UniformCandidateSamplerInfo::GenerateStrategies(int64_t stage_id) { | |||
| if (InferAttrs() != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer attrs failed"; | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_split = {}; | |||
| Shapes splittable_input = {}; | |||
| size_t splitable_value = 1; | |||
| if (remove_accidental_hits_) { | |||
| splitable_value = 0; | |||
| } | |||
| for (size_t i = 0; i < inputs_shape_[0].size(); ++i) { | |||
| input_split.push_back(splitable_value); | |||
| } | |||
| splittable_input.push_back(input_split); | |||
| std::vector<StrategyPtr> sp_vector; | |||
| if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_input, &sp_vector) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Generate strategies failed"; | |||
| return FAILED; | |||
| } | |||
| size_t success = 0; | |||
| for (auto &sp : sp_vector) { | |||
| PrintStrategy(sp); | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy."; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| std::shared_ptr<Strategys> UniformCandidateSamplerInfo::GenerateBatchStrategies() { | |||
| if (GetAttrs() != SUCCESS) { | |||
| MS_LOG(EXCEPTION) << name_ << ": Get attr failed"; | |||
| } | |||
| CheckGlobalDeviceManager(); | |||
| Dimensions input_strategy(inputs_shape_[0].size(), 1); | |||
| Strategys strategy_v = {input_strategy}; | |||
| return std::make_shared<Strategys>(strategy_v); | |||
| } | |||
| Status UniformCandidateSamplerInfo::Init(const StrategyPtr &strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init success."; | |||
| return SUCCESS; | |||
| } | |||
| Status UniformCandidateSamplerInfo::InitForCostModel(const StrategyPtr &strategy) { | |||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init for cost model failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init for cost model success."; | |||
| return SUCCESS; | |||
| } | |||
| ReplaceGraphPtr UniformCandidateSamplerInfo::replace_graph(const CNodePtr &cnode) { | |||
| auto input_strategy = strategy_->GetInputDim().at(0); | |||
| // Only when the axis-1 is sharded, we need to modify the attribute | |||
| if (input_strategy.size() == 2 && input_strategy[1] > 1) { | |||
| if (ComputeReplaceGraph(cnode) != SUCCESS) { | |||
| MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed."; | |||
| } | |||
| } | |||
| return replace_graph_; | |||
| } | |||
| Status UniformCandidateSamplerInfo::ComputeReplaceGraph(const CNodePtr &cnode) { | |||
| GenerateGraph gen_g = GenerateGraph(); | |||
| auto input_strategy = strategy_->GetInputDim().at(0); | |||
| if (gen_g.Init(cnode) != SUCCESS) { | |||
| MS_LOG(ERROR) << "GenerateGraph Init failed"; | |||
| return FAILED; | |||
| } | |||
| auto slice_num_true = num_true_ / input_strategy[1]; | |||
| // Get the attributes of the UnsortedSegmentMin | |||
| Attr attr_num_ture = std::make_pair(NUM_TRUE, MakeValue(slice_num_true)); | |||
| Attr attr_num_sampled = std::make_pair(NUM_SAMPLED, MakeValue(num_sampled_)); | |||
| Attr attr_unique = std::make_pair(UNIQUE_STRING, MakeValue(unique_)); | |||
| Attr attr_range_max = std::make_pair(RANGE_MAX, MakeValue(range_max_)); | |||
| Attr attr_seed = std::make_pair(SEED, MakeValue(seed_)); | |||
| Attr attr_remove_accidental_hits = std::make_pair(REMOVE_ACCIDENTAL_HITS, MakeValue(remove_accidental_hits_)); | |||
| OperatorAttrs attrs = {attr_num_ture, attr_num_sampled, attr_unique, | |||
| attr_range_max, attr_seed, attr_remove_accidental_hits}; | |||
| auto new_sampler_op = gen_g.PushBack({gen_g.NewOpInst(UNIFORM_CANDIDATE_SAMPLER, attrs), gen_g.virtual_input_node()}); | |||
| std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(new_sampler_op, 1)}; | |||
| replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>( | |||
| std::make_pair(input_nodes, new_sampler_op)); | |||
| return SUCCESS; | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,76 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_ | |||
| #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include "ir/value.h" | |||
| #include "frontend/parallel/auto_parallel/operator_costmodel.h" | |||
| #include "frontend/parallel/ops_info/operator_info.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| constexpr size_t UNIFORM_CANDIDATE_SAMPLER_INPUTS_SIZE = 2; | |||
| class UniformCandidateSamplerInfo : public OperatorInfo { | |||
| public: | |||
| UniformCandidateSamplerInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, | |||
| std::make_shared<UniformCandidateSamplerCost>()), | |||
| num_sampled_(0), | |||
| num_true_(0), | |||
| unique_(false), | |||
| range_max_(0), | |||
| seed_(0), | |||
| remove_accidental_hits_(false) {} | |||
| ~UniformCandidateSamplerInfo() override = default; | |||
| Status Init(const StrategyPtr &strategy) override; | |||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||
| Status GenerateStrategies(int64_t) override; | |||
| std::shared_ptr<Strategys> GenerateBatchStrategies() override; | |||
| Status SetCostUnderStrategy(const StrategyPtr &) override; | |||
| Status InferAsLossDivisor() override; | |||
| ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override; | |||
| protected: | |||
| Status GetAttrs() override; | |||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||
| Status InferMirrorOps() override; | |||
| Status InferForwardCommunication() override { return SUCCESS; } | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferTensorMap() override; | |||
| Status ComputeReplaceGraph(const CNodePtr &cnode); | |||
| private: | |||
| Status GetUniformSamplerAttrBool(const std::string &argsy, bool *value); | |||
| Status GetUniformSamplerAttrInt64(const std::string &args, int64_t *value); | |||
| int64_t num_sampled_; | |||
| int64_t num_true_; | |||
| bool unique_; | |||
| int64_t range_max_; | |||
| int64_t seed_; | |||
| bool remove_accidental_hits_; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_ | |||
| @@ -317,7 +317,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE, | |||
| BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2, | |||
| SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM, | |||
| UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE}; | |||
| UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER}; | |||
| // clang-format on | |||
| auto iter = splittable_op.find(op_name); | |||
| @@ -0,0 +1,161 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore as ms | |||
| import mindspore.context as context | |||
| from mindspore import Tensor, Parameter | |||
| import mindspore.nn as nn | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import TrainOneStepCell, Momentum | |||
| from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self, embedding_weight, num_true, num_sampled, unique, range_max, seed, remove_accidential, | |||
| strategy1=None): | |||
| super(Net, self).__init__() | |||
| self.sampler = P.UniformCandidateSampler(num_true, num_sampled, unique, range_max, seed, | |||
| remove_accidential) | |||
| if strategy1: | |||
| self.sampler.shard(strategy1) | |||
| self.embedding_table = Parameter(embedding_weight, "embedding_weight") | |||
| self.gatherv2 = P.GatherV2() | |||
| self.reduce_sum = P.ReduceSum() | |||
| self.reduce_sum2 = P.ReduceSum() | |||
| self.reduce_sum3 = P.ReduceSum() | |||
| def construct(self, x): | |||
| out1, out2, out3 = self.sampler(x) | |||
| lookup = self.gatherv2(self.embedding_table, out1, 0) | |||
| loss = out1 - out3 | |||
| loss = self.reduce_sum(loss, (0,)) | |||
| loss2 = self.reduce_sum2(lookup, (0, 1)) | |||
| loss3 = self.reduce_sum3(out2, (0, 1)) | |||
| loss4 = loss + loss2 + loss3 | |||
| return loss4 | |||
| class Net2(nn.Cell): | |||
| def __init__(self, mul_weight, num_true, num_sampled, unique, range_max, seed, remove_accidential, | |||
| strategy1=None): | |||
| super(Net2, self).__init__() | |||
| self.sampler = P.UniformCandidateSampler(num_true, num_sampled, unique, range_max, seed, | |||
| remove_accidential) | |||
| self.cast = P.Cast() | |||
| self.weight = Parameter(mul_weight, "w1") | |||
| self.mul = P.Mul() | |||
| if strategy1: | |||
| self.sampler.shard(strategy1) | |||
| def construct(self, x): | |||
| x = self.mul(x, self.weight) | |||
| x = self.cast(x, ms.int32) | |||
| _, out2, _ = self.sampler(x) | |||
| return out2 | |||
| _w = Tensor(np.ones([48, 16]), dtype=ms.float32) | |||
| _w1 = Tensor(np.ones([96, 64]), dtype=ms.float32) | |||
| _x = Tensor(np.ones([48, 16]), dtype=ms.int32) | |||
| def compile_net(net): | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| train_net.set_train() | |||
| _executor.compile(train_net, _x) | |||
| context.reset_auto_parallel_context() | |||
| def test_uniform_candidate_sampler_no_full_0d_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((4, 1),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=strategy1) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_no_full_1d_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 4),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=strategy1) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_full_0d_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((8, 1),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=strategy1) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_full_1d_split(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 8),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=strategy1) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_full_1d_unqiue_false(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 8),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=strategy1) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_auto_parllel(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=None) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_auto_parllel_unqiue_true(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=False, strategy1=None) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_auto_parllel_remove_true(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1, | |||
| remove_accidential=True, strategy1=None) | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_full_1d_remove_true(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 8),) | |||
| net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1, | |||
| remove_accidential=True, strategy1=strategy1) | |||
| with pytest.raises(RuntimeError): | |||
| compile_net(net) | |||
| def test_uniform_candidate_sampler_as_final(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 8),) | |||
| net = Net2(_w, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1, remove_accidential=False, | |||
| strategy1=strategy1) | |||
| with pytest.raises(RuntimeError): | |||
| compile_net(net) | |||