|
|
|
@@ -30,6 +30,8 @@ AlexNet composition consists of 5 convolutional layers and 3 fully connected lay |
|
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
|
|
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
|
|
|
|
|
|
|
|
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|
|
|
|
|
|
|
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
|
|
|
@@ -195,15 +197,15 @@ Before running the command below, please check the checkpoint path used for eval |
|
|
|
| -------------------------- | ------------------------------------------------------------| -------------------------------------------------|
|
|
|
|
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-32G |
|
|
|
|
| uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) |
|
|
|
|
| MindSpore Version | 0.5.0-beta | 0.7.0-beta |
|
|
|
|
| MindSpore Version | 1.0.0 | 0.7.0-beta |
|
|
|
|
| Dataset | CIFAR-10 | CIFAR-10 |
|
|
|
|
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
|
|
|
|
| Optimizer | Momentum | Momentum |
|
|
|
|
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
|
|
|
|
| outputs | probability | probability |
|
|
|
|
| Loss | 0.0016 | 0.01 |
|
|
|
|
| Speed | 21 ms/step | 16.8 ms/step |
|
|
|
|
| Total time | 17 mins | 14 mins |
|
|
|
|
| Loss | 0.08 | 0.01 |
|
|
|
|
| Speed | 7.3 ms/step | 16.8 ms/step |
|
|
|
|
| Total time | 6 mins | 14 mins |
|
|
|
|
| Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) |
|
|
|
|
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
|
|
|
|
|
|
|
|
|