| @@ -18,7 +18,7 @@ datasets in special format, including mindrecord, tfrecord, manifest. Users | |||
| can also create samplers with this module to sample data. | |||
| """ | |||
| from .core.configuration import config | |||
| from .core import config | |||
| from .engine.datasets import TFRecordDataset, ImageFolderDatasetV2, MnistDataset, MindDataset, NumpySlicesDataset, \ | |||
| GeneratorDataset, ManifestDataset, Cifar10Dataset, Cifar100Dataset, VOCDataset, CocoDataset, CelebADataset,\ | |||
| TextFileDataset, CLUEDataset, Schema, Shuffle, zip, RandomDataset | |||
| @@ -0,0 +1,195 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================== | |||
| """ | |||
| The configuration manager. | |||
| """ | |||
| import random | |||
| import numpy | |||
| import mindspore._c_dataengine as cde | |||
| __all__ = ['set_seed', 'get_seed', 'set_prefetch_size', 'get_prefetch_size', 'set_num_parallel_workers', | |||
| 'get_num_parallel_workers', 'set_monitor_sampling_interval', 'get_monitor_sampling_interval', 'load'] | |||
| INT32_MAX = 2147483647 | |||
| UINT32_MAX = 4294967295 | |||
| _config = cde.GlobalContext.config_manager() | |||
| def set_seed(seed): | |||
| """ | |||
| Set the seed to be used in any random generator. This is used to produce deterministic results. | |||
| Note: | |||
| This set_seed function sets the seed in the python random library and numpy.random library | |||
| for deterministic python augmentations using randomness. This set_seed function should | |||
| be called with every iterator created to reset the random seed. In our pipeline this | |||
| does not guarantee deterministic results with num_parallel_workers > 1. | |||
| Args: | |||
| seed(int): seed to be set. | |||
| Raises: | |||
| ValueError: If seed is invalid (< 0 or > MAX_UINT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> # sets the new seed value, now operators with a random seed will use new seed value. | |||
| >>> ds.config.set_seed(1000) | |||
| """ | |||
| if seed < 0 or seed > UINT32_MAX: | |||
| raise ValueError("Seed given is not within the required range.") | |||
| _config.set_seed(seed) | |||
| random.seed(seed) | |||
| # numpy.random isn't thread safe | |||
| numpy.random.seed(seed) | |||
| def get_seed(): | |||
| """ | |||
| Get the seed. | |||
| Returns: | |||
| Int, seed. | |||
| """ | |||
| return _config.get_seed() | |||
| def set_prefetch_size(size): | |||
| """ | |||
| Set the number of rows to be prefetched. | |||
| Args: | |||
| size (int): total number of rows to be prefetched. | |||
| Raises: | |||
| ValueError: If prefetch_size is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> # sets the new prefetch value. | |||
| >>> ds.config.set_prefetch_size(1000) | |||
| """ | |||
| if size <= 0 or size > INT32_MAX: | |||
| raise ValueError("Prefetch size given is not within the required range.") | |||
| _config.set_op_connector_size(size) | |||
| def get_prefetch_size(): | |||
| """ | |||
| Get the prefetch size in number of rows. | |||
| Returns: | |||
| Size, total number of rows to be prefetched. | |||
| """ | |||
| return _config.get_op_connector_size() | |||
| def set_num_parallel_workers(num): | |||
| """ | |||
| Set the default number of parallel workers. | |||
| Args: | |||
| num (int): number of parallel workers to be used as a default for each operation. | |||
| Raises: | |||
| ValueError: If num_parallel_workers is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> # sets the new parallel_workers value, now parallel dataset operators will run with 8 workers. | |||
| >>> ds.config.set_num_parallel_workers(8) | |||
| """ | |||
| if num <= 0 or num > INT32_MAX: | |||
| raise ValueError("Num workers given is not within the required range.") | |||
| _config.set_num_parallel_workers(num) | |||
| def get_num_parallel_workers(): | |||
| """ | |||
| Get the default number of parallel workers. | |||
| Returns: | |||
| Int, number of parallel workers to be used as a default for each operation | |||
| """ | |||
| return _config.get_num_parallel_workers() | |||
| def set_monitor_sampling_interval(interval): | |||
| """ | |||
| Set the default interval(ms) of monitor sampling. | |||
| Args: | |||
| interval (int): interval(ms) to be used to performance monitor sampling. | |||
| Raises: | |||
| ValueError: If interval is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> # sets the new interval value. | |||
| >>> ds.config.set_monitor_sampling_interval(100) | |||
| """ | |||
| if interval <= 0 or interval > INT32_MAX: | |||
| raise ValueError("Interval given is not within the required range.") | |||
| _config.set_monitor_sampling_interval(interval) | |||
| def get_monitor_sampling_interval(): | |||
| """ | |||
| Get the default interval of performance monitor sampling. | |||
| Returns: | |||
| Interval: interval(ms) of performance monitor sampling. | |||
| """ | |||
| return _config.get_monitor_sampling_interval() | |||
| def __str__(): | |||
| """ | |||
| String representation of the configurations. | |||
| Returns: | |||
| Str, configurations. | |||
| """ | |||
| return str(_config) | |||
| def load(file): | |||
| """ | |||
| Load configuration from a file. | |||
| Args: | |||
| file (str): path the config file to be loaded. | |||
| Raises: | |||
| RuntimeError: If file is invalid and parsing fails. | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> # sets the default value according to values in configuration file. | |||
| >>> ds.config.load("path/to/config/file") | |||
| >>> # example config file: | |||
| >>> # { | |||
| >>> # "logFilePath": "/tmp", | |||
| >>> # "rowsPerBuffer": 32, | |||
| >>> # "numParallelWorkers": 4, | |||
| >>> # "workerConnectorSize": 16, | |||
| >>> # "opConnectorSize": 16, | |||
| >>> # "seed": 5489, | |||
| >>> # "monitorSamplingInterval": 30 | |||
| >>> # } | |||
| """ | |||
| _config.load(file) | |||
| @@ -1,195 +0,0 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================== | |||
| """ | |||
| The configuration manager. | |||
| """ | |||
| import random | |||
| import numpy | |||
| import mindspore._c_dataengine as cde | |||
| INT32_MAX = 2147483647 | |||
| UINT32_MAX = 4294967295 | |||
| class ConfigurationManager: | |||
| """The configuration manager""" | |||
| def __init__(self): | |||
| self.config = cde.GlobalContext.config_manager() | |||
| def set_seed(self, seed): | |||
| """ | |||
| Set the seed to be used in any random generator. This is used to produce deterministic results. | |||
| Note: | |||
| This set_seed function sets the seed in the python random library and numpy.random library | |||
| for deterministic python augmentations using randomness. This set_seed function should | |||
| be called with every iterator created to reset the random seed. In our pipeline this | |||
| does not guarantee deterministic results with num_parallel_workers > 1. | |||
| Args: | |||
| seed(int): seed to be set | |||
| Raises: | |||
| ValueError: If seed is invalid (< 0 or > MAX_UINT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> con = ds.engine.ConfigurationManager() | |||
| >>> # sets the new seed value, now operators with a random seed will use new seed value. | |||
| >>> con.set_seed(1000) | |||
| """ | |||
| if seed < 0 or seed > UINT32_MAX: | |||
| raise ValueError("Seed given is not within the required range") | |||
| self.config.set_seed(seed) | |||
| random.seed(seed) | |||
| # numpy.random isn't thread safe | |||
| numpy.random.seed(seed) | |||
| def get_seed(self): | |||
| """ | |||
| Get the seed | |||
| Returns: | |||
| Int, seed. | |||
| """ | |||
| return self.config.get_seed() | |||
| def set_prefetch_size(self, size): | |||
| """ | |||
| Set the number of rows to be prefetched. | |||
| Args: | |||
| size: total number of rows to be prefetched. | |||
| Raises: | |||
| ValueError: If prefetch_size is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> con = ds.engine.ConfigurationManager() | |||
| >>> # sets the new prefetch value. | |||
| >>> con.set_prefetch_size(1000) | |||
| """ | |||
| if size <= 0 or size > INT32_MAX: | |||
| raise ValueError("Prefetch size given is not within the required range") | |||
| self.config.set_op_connector_size(size) | |||
| def get_prefetch_size(self): | |||
| """ | |||
| Get the prefetch size in number of rows. | |||
| Returns: | |||
| Size, total number of rows to be prefetched. | |||
| """ | |||
| return self.config.get_op_connector_size() | |||
| def set_num_parallel_workers(self, num): | |||
| """ | |||
| Set the default number of parallel workers | |||
| Args: | |||
| num: number of parallel workers to be used as a default for each operation | |||
| Raises: | |||
| ValueError: If num_parallel_workers is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> con = ds.engine.ConfigurationManager() | |||
| >>> # sets the new parallel_workers value, now parallel dataset operators will run with 8 workers. | |||
| >>> con.set_num_parallel_workers(8) | |||
| """ | |||
| if num <= 0 or num > INT32_MAX: | |||
| raise ValueError("Num workers given is not within the required range") | |||
| self.config.set_num_parallel_workers(num) | |||
| def get_num_parallel_workers(self): | |||
| """ | |||
| Get the default number of parallel workers. | |||
| Returns: | |||
| Int, number of parallel workers to be used as a default for each operation | |||
| """ | |||
| return self.config.get_num_parallel_workers() | |||
| def set_monitor_sampling_interval(self, interval): | |||
| """ | |||
| Set the default interval(ms) of monitor sampling. | |||
| Args: | |||
| interval: interval(ms) to be used to performance monitor sampling. | |||
| Raises: | |||
| ValueError: If interval is invalid (<= 0 or > MAX_INT_32). | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> con = ds.engine.ConfigurationManager() | |||
| >>> # sets the new interval value. | |||
| >>> con.set_monitor_sampling_interval(100) | |||
| """ | |||
| if interval <= 0 or interval > INT32_MAX: | |||
| raise ValueError("Interval given is not within the required range") | |||
| self.config.set_monitor_sampling_interval(interval) | |||
| def get_monitor_sampling_interval(self): | |||
| """ | |||
| Get the default interval of performance monitor sampling. | |||
| Returns: | |||
| Interval: interval(ms) of performance monitor sampling. | |||
| """ | |||
| return self.config.get_monitor_sampling_interval() | |||
| def __str__(self): | |||
| """ | |||
| String representation of the configurations. | |||
| Returns: | |||
| Str, configurations. | |||
| """ | |||
| return str(self.config) | |||
| def load(self, file): | |||
| """ | |||
| Load configuration from a file. | |||
| Args: | |||
| file: path the config file to be loaded | |||
| Raises: | |||
| RuntimeError: If file is invalid and parsing fails. | |||
| Examples: | |||
| >>> import mindspore.dataset as ds | |||
| >>> con = ds.engine.ConfigurationManager() | |||
| >>> # sets the default value according to values in configuration file. | |||
| >>> con.load("path/to/config/file") | |||
| >>> # example config file: | |||
| >>> # { | |||
| >>> # "logFilePath": "/tmp", | |||
| >>> # "rowsPerBuffer": 32, | |||
| >>> # "numParallelWorkers": 4, | |||
| >>> # "workerConnectorSize": 16, | |||
| >>> # "opConnectorSize": 16, | |||
| >>> # "seed": 5489, | |||
| >>> # "monitorSamplingInterval": 30 | |||
| >>> # } | |||
| """ | |||
| self.config.load(file) | |||
| config = ConfigurationManager() | |||
| @@ -26,10 +26,9 @@ from .datasets import * | |||
| from .iterators import * | |||
| from .serializer_deserializer import serialize, deserialize, show, compare | |||
| from .samplers import * | |||
| from ..core.configuration import config, ConfigurationManager | |||
| from ..core import config | |||
| __all__ = ["config", "ConfigurationManager", "zip", | |||
| "ImageFolderDatasetV2", "MnistDataset", | |||
| __all__ = ["config", "zip", "ImageFolderDatasetV2", "MnistDataset", | |||
| "MindDataset", "GeneratorDataset", "TFRecordDataset", "CLUEDataset", | |||
| "ManifestDataset", "Cifar10Dataset", "Cifar100Dataset", "CelebADataset", | |||
| "VOCDataset", "CocoDataset", "TextFileDataset", "Schema", "DistributedSampler", | |||
| @@ -22,7 +22,7 @@ import sys | |||
| from mindspore import log as logger | |||
| from . import datasets as de | |||
| from ..transforms.vision.utils import Inter, Border | |||
| from ..core.configuration import config | |||
| from ..core import config | |||
| def serialize(dataset, json_filepath=None): | |||
| """ | |||