| @@ -600,7 +600,6 @@ def get_bprop_roi_align(self): | |||||
| sample_num = self.sample_num | sample_num = self.sample_num | ||||
| def bprop(inputs, rois, out, dout): | def bprop(inputs, rois, out, dout): | ||||
| rois_shape = shape_op(rois) | |||||
| inputs_shape = shape_op(inputs) | inputs_shape = shape_op(inputs) | ||||
| dx = G.ROIAlignGrad(inputs_shape, | dx = G.ROIAlignGrad(inputs_shape, | ||||
| pooled_height, | pooled_height, | ||||
| @@ -608,7 +607,7 @@ def get_bprop_roi_align(self): | |||||
| spatial_scale, | spatial_scale, | ||||
| sample_num, | sample_num, | ||||
| )(dout, rois) | )(dout, rois) | ||||
| return dx, zeros_like(rois_shape) | |||||
| return dx, zeros_like(rois) | |||||
| return bprop | return bprop | ||||
| @@ -76,6 +76,8 @@ from .strided_slice_d import _strided_slice_d_tbe | |||||
| from .strided_slice_grad_d import _strided_slice_grad_d_tbe | from .strided_slice_grad_d import _strided_slice_grad_d_tbe | ||||
| from .split_d import _split_d_tbe | from .split_d import _split_d_tbe | ||||
| from .exp import _exp_tbe | from .exp import _exp_tbe | ||||
| from .elu import _elu_tbe | |||||
| from .elu_grad import _elu_grad_tbe | |||||
| from .div import _div_tbe | from .div import _div_tbe | ||||
| from .log import _log_tbe | from .log import _log_tbe | ||||
| from .floor_div import _floor_div_tbe | from .floor_div import _floor_div_tbe | ||||
| @@ -0,0 +1,40 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Elu op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||||
| elu_op_info = TBERegOp("Elu") \ | |||||
| .fusion_type("ELEMWISE") \ | |||||
| .async_flag(False) \ | |||||
| .binfile_name("elu.so") \ | |||||
| .compute_cost(10) \ | |||||
| .kernel_name("elu") \ | |||||
| .partial_flag(True) \ | |||||
| .op_pattern("formatAgnostic") \ | |||||
| .attr("alpha", "optional", "float", "all", "1.0") \ | |||||
| .input(0, "x", False, "required", "all") \ | |||||
| .output(0, "y", False, "required", "all") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ | |||||
| .get_op_info() | |||||
| @op_info_register(elu_op_info) | |||||
| def _elu_tbe(): | |||||
| """Elu TBE register""" | |||||
| return | |||||
| @@ -0,0 +1,43 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """EluGrad op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||||
| elu_grad_op_info = TBERegOp("EluGrad") \ | |||||
| .fusion_type("ELEMWISE") \ | |||||
| .async_flag(False) \ | |||||
| .binfile_name("elu_grad.so") \ | |||||
| .compute_cost(10) \ | |||||
| .kernel_name("elu_grad") \ | |||||
| .partial_flag(True) \ | |||||
| .input(0, "grads", False, "required", "all") \ | |||||
| .input(1, "activations", False, "required", "all") \ | |||||
| .output(0, "y", False, "required", "all") \ | |||||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \ | |||||
| .dtype_format(DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ) \ | |||||
| .dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \ | |||||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \ | |||||
| .dtype_format(DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ) \ | |||||
| .dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||||
| .get_op_info() | |||||
| @op_info_register(elu_grad_op_info) | |||||
| def _elu_grad_tbe(): | |||||
| """EluGrad TBE register""" | |||||
| return | |||||
| @@ -1527,7 +1527,8 @@ class L2Loss(PrimitiveWithInfer): | |||||
| def infer_dtype(self, x_type): | def infer_dtype(self, x_type): | ||||
| validator.check_subclass("x_type", x_type, mstype.tensor, self.name) | validator.check_subclass("x_type", x_type, mstype.tensor, self.name) | ||||
| validator.check_tensor_type_same({'x_type': x_type}, [mstype.double, mstype.float_, mstype.float16], self.name) | |||||
| valid_types = [mstype.float16, mstype.float32, mstype.double] | |||||
| validator.check_tensor_type_same({'x_type': x_type}, valid_types, self.name) | |||||
| return x_type | return x_type | ||||
| @@ -874,7 +874,7 @@ test_case_nn_ops = [ | |||||
| 'skip': ['backward']}), | 'skip': ['backward']}), | ||||
| ('L2Loss_1', { | ('L2Loss_1', { | ||||
| 'block': P.L2Loss(), | 'block': P.L2Loss(), | ||||
| 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float16)], | |||||
| 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)], | |||||
| 'desc_bprop': []}), | 'desc_bprop': []}), | ||||
| ('L2Loss_2', { | ('L2Loss_2', { | ||||
| 'block': P.L2Loss(), | 'block': P.L2Loss(), | ||||