Browse Source

optimized readme and add per_step_time

pull/15624/head
wsq3 4 years ago
parent
commit
eb80f555b7
3 changed files with 18 additions and 16 deletions
  1. +7
    -7
      model_zoo/official/cv/yolov3_darknet53/README.md
  2. +8
    -8
      model_zoo/official/cv/yolov3_darknet53/README_CN.md
  3. +3
    -1
      model_zoo/official/cv/yolov3_darknet53/train.py

+ 7
- 7
model_zoo/official/cv/yolov3_darknet53/README.md View File

@@ -117,13 +117,13 @@ python train.py \
--lr_scheduler=cosine_annealing > log.txt 2>&1 &

# standalone training example(1p) by shell script
sh run_standalone_train.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_standalone_train.sh dataset/coco2014 darknet53_backbone.ckpt

# For Ascend device, distributed training example(8p) by shell script
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
bash run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json

# For GPU device, distributed training example(8p) by shell script
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt

# run evaluation by python command
python eval.py \
@@ -132,7 +132,7 @@ python eval.py \
--testing_shape=416 > log.txt 2>&1 &

# run evaluation by shell script
sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
bash run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
```

## [Script Description](#contents)
@@ -269,13 +269,13 @@ The model checkpoint will be saved in outputs directory.
For Ascend device, distributed training example(8p) by shell script

```command
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
bash run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
```

For GPU device, distributed training example(8p) by shell script

```command
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
```

The above shell script will run distribute training in the background. You can view the results through the file `train_parallel[X]/log.txt`. The loss value will be achieved as follows:
@@ -307,7 +307,7 @@ python eval.py \
--pretrained=yolov3.ckpt \
--testing_shape=416 > log.txt 2>&1 &
OR
sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
bash run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
```

The above python command will run in the background. You can view the results through the file "log.txt". The mAP of the test dataset will be as follows:


+ 8
- 8
model_zoo/official/cv/yolov3_darknet53/README_CN.md View File

@@ -90,7 +90,7 @@ YOLOv3使用DarkNet53执行特征提取,这是YOLOv2中的Darknet-19和残差
可以从网站[下载](https://pjreddie.com/media/files/darknet53.conv.74) darknet53.conv.74文件。
也可以在linux系统中使用指令下载该文件。
```command
```command
wget https://pjreddie.com/media/files/darknet53.conv.74
```
@@ -118,17 +118,17 @@ python train.py \
```shell script
# shell脚本单机训练示例(1卡)
sh run_standalone_train.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_standalone_train.sh dataset/coco2014 darknet53_backbone.ckpt
```
```shell script
# 对于Ascend设备,使用shell脚本分布式训练示例(8卡)
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
bash run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
```
```shell script
# 对于GPU设备,使用shell脚本分布式训练示例(8卡)
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
```
```python
@@ -141,7 +141,7 @@ python eval.py \
```shell script
# 通过shell脚本运行评估
sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
bash run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
```
# 脚本说明
@@ -270,13 +270,13 @@ python train.py \
对于Ascend设备,使用shell脚本分布式训练示例(8卡)
```shell script
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
bash run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
```
对于GPU设备,使用shell脚本分布式训练示例(8卡)
```shell script
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
bash run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
```
上述shell脚本将在后台运行分布训练。您可以通过`train_parallel[X]/log.txt`文件查看结果。损失值的实现如下:
@@ -312,7 +312,7 @@ python eval.py \
或者
```shell script
sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
bash run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
```
上述python命令将在后台运行,您可以通过log.txt文件查看结果。测试数据集的mAP如下:


+ 3
- 1
model_zoo/official/cv/yolov3_darknet53/train.py View File

@@ -274,10 +274,12 @@ def train():
if i % args.log_interval == 0:
time_used = time.time() - t_end
epoch = int(i / args.steps_per_epoch)
per_step_time = time_used/args.log_interval
fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
if args.rank == 0:
args.logger.info(
'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{},'
' per_step_time:{}'.format(epoch, i, loss_meter, fps, lr[i], per_step_time))
t_end = time.time()
loss_meter.reset()
old_progress = i


Loading…
Cancel
Save