|
|
|
@@ -0,0 +1,251 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
"""train bert network without lossscale""" |
|
|
|
|
|
|
|
import os |
|
|
|
import time |
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
import mindspore.dataset.engine.datasets as de |
|
|
|
import mindspore.dataset.transforms.c_transforms as C |
|
|
|
from mindspore import context |
|
|
|
from mindspore import log as logger |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.nn.optim import Lamb |
|
|
|
from mindspore.train.callback import Callback |
|
|
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager |
|
|
|
from mindspore.train.model import Model |
|
|
|
import mindspore.nn.learning_rate_schedule as lr_schedules |
|
|
|
from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertNetworkWithLoss |
|
|
|
from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertTrainOneStepWithLossScaleCell |
|
|
|
from model_zoo.official.nlp.bert.src.bert_model import BertConfig |
|
|
|
|
|
|
|
|
|
|
|
_current_dir = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] |
|
|
|
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" |
|
|
|
|
|
|
|
|
|
|
|
def get_config(version='base', batch_size=1): |
|
|
|
"""get config""" |
|
|
|
if version == 'base': |
|
|
|
bert_config = BertConfig( |
|
|
|
batch_size=batch_size, |
|
|
|
seq_length=128, |
|
|
|
vocab_size=21136, |
|
|
|
hidden_size=768, |
|
|
|
num_hidden_layers=2, |
|
|
|
num_attention_heads=12, |
|
|
|
intermediate_size=3072, |
|
|
|
hidden_act="gelu", |
|
|
|
hidden_dropout_prob=0.1, |
|
|
|
attention_probs_dropout_prob=0.1, |
|
|
|
max_position_embeddings=512, |
|
|
|
type_vocab_size=2, |
|
|
|
initializer_range=0.02, |
|
|
|
use_relative_positions=True, |
|
|
|
input_mask_from_dataset=True, |
|
|
|
token_type_ids_from_dataset=True, |
|
|
|
dtype=mstype.float32, |
|
|
|
compute_type=mstype.float32) |
|
|
|
elif version == 'large': |
|
|
|
bert_config = BertConfig( |
|
|
|
batch_size=batch_size, |
|
|
|
seq_length=128, |
|
|
|
vocab_size=21136, |
|
|
|
hidden_size=1024, |
|
|
|
num_hidden_layers=2, |
|
|
|
num_attention_heads=16, |
|
|
|
intermediate_size=4096, |
|
|
|
hidden_act="gelu", |
|
|
|
hidden_dropout_prob=0.0, |
|
|
|
attention_probs_dropout_prob=0.0, |
|
|
|
max_position_embeddings=512, |
|
|
|
type_vocab_size=2, |
|
|
|
initializer_range=0.02, |
|
|
|
use_relative_positions=False, |
|
|
|
input_mask_from_dataset=True, |
|
|
|
token_type_ids_from_dataset=True, |
|
|
|
dtype=mstype.float32, |
|
|
|
compute_type=mstype.float16, |
|
|
|
enable_fused_layernorm=False) |
|
|
|
else: |
|
|
|
bert_config = BertConfig(batch_size=batch_size) |
|
|
|
return bert_config |
|
|
|
|
|
|
|
|
|
|
|
def me_de_train_dataset(sink_mode=False): |
|
|
|
"""test me de train dataset""" |
|
|
|
# apply repeat operations |
|
|
|
repeat_count = 1 |
|
|
|
sink_size = -1 |
|
|
|
batch_size = 16 |
|
|
|
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", |
|
|
|
"next_sentence_labels", "masked_lm_positions", |
|
|
|
"masked_lm_ids", "masked_lm_weights"], shuffle=False) |
|
|
|
type_cast_op = C.TypeCast(mstype.int32) |
|
|
|
new_repeat_count = repeat_count |
|
|
|
if sink_mode: |
|
|
|
sink_size = 100 |
|
|
|
new_repeat_count = 3 |
|
|
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) |
|
|
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) |
|
|
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) |
|
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op) |
|
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op) |
|
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op) |
|
|
|
# apply batch operations |
|
|
|
ds = ds.batch(batch_size, drop_remainder=True) |
|
|
|
logger.info("data size: {}".format(ds.get_dataset_size())) |
|
|
|
logger.info("repeat_count: {}".format(ds.get_repeat_count())) |
|
|
|
return ds, new_repeat_count, sink_size |
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(shape): |
|
|
|
"""weight variable""" |
|
|
|
np.random.seed(1) |
|
|
|
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32) |
|
|
|
return Tensor(ones) |
|
|
|
|
|
|
|
|
|
|
|
class BertLearningRate(lr_schedules.LearningRateSchedule): |
|
|
|
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power): |
|
|
|
super(BertLearningRate, self).__init__() |
|
|
|
self.warmup_flag = False |
|
|
|
if warmup_steps > 0: |
|
|
|
self.warmup_flag = True |
|
|
|
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps) |
|
|
|
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power) |
|
|
|
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32)) |
|
|
|
|
|
|
|
self.greater = P.Greater() |
|
|
|
self.one = Tensor(np.array([1.0]).astype(np.float32)) |
|
|
|
self.cast = P.Cast() |
|
|
|
|
|
|
|
def construct(self, global_step): |
|
|
|
decay_lr = self.decay_lr(global_step) |
|
|
|
if self.warmup_flag: |
|
|
|
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) |
|
|
|
warmup_lr = self.warmup_lr(global_step) |
|
|
|
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr |
|
|
|
else: |
|
|
|
lr = decay_lr |
|
|
|
return lr |
|
|
|
|
|
|
|
|
|
|
|
class ModelCallback(Callback): |
|
|
|
def __init__(self): |
|
|
|
super(ModelCallback, self).__init__() |
|
|
|
self.loss_list = [] |
|
|
|
self.overflow_list = [] |
|
|
|
self.lossscale_list = [] |
|
|
|
|
|
|
|
def step_end(self, run_context): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0]) |
|
|
|
self.overflow_list.append(cb_params.net_outputs[1].asnumpy()) |
|
|
|
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) |
|
|
|
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) |
|
|
|
|
|
|
|
class TimeMonitor(Callback): |
|
|
|
"""Time Monitor.""" |
|
|
|
def __init__(self, data_size): |
|
|
|
super(TimeMonitor, self).__init__() |
|
|
|
self.data_size = data_size |
|
|
|
self.epoch_mseconds_list = [] |
|
|
|
self.per_step_mseconds_list = [] |
|
|
|
def epoch_begin(self, run_context): |
|
|
|
self.epoch_time = time.time() |
|
|
|
|
|
|
|
def epoch_end(self, run_context): |
|
|
|
epoch_mseconds = (time.time() - self.epoch_time) * 1000 |
|
|
|
self.epoch_mseconds_list.append(epoch_mseconds) |
|
|
|
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_bert_percision(): |
|
|
|
"""test bert percision""" |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
|
ds, new_repeat_count, _ = me_de_train_dataset() |
|
|
|
version = os.getenv('VERSION', 'large') |
|
|
|
batch_size = 16 |
|
|
|
config = get_config(version=version, batch_size=batch_size) |
|
|
|
netwithloss = BertNetworkWithLoss(config, True) |
|
|
|
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count, |
|
|
|
learning_rate=5e-5, end_learning_rate=1e-9, |
|
|
|
power=10.0, warmup_steps=0) |
|
|
|
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower() |
|
|
|
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower() |
|
|
|
decay_params = list(filter(decay_filter, netwithloss.trainable_params())) |
|
|
|
other_params = list(filter(no_decay_filter, netwithloss.trainable_params())) |
|
|
|
group_params = [{'params': decay_params, 'weight_decay': 0.01}, |
|
|
|
{'params': other_params}, |
|
|
|
{'order_params': netwithloss.trainable_params()}] |
|
|
|
optimizer = Lamb(group_params, lr) |
|
|
|
scale_window = 3 |
|
|
|
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) |
|
|
|
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, |
|
|
|
scale_update_cell=scale_manager.get_update_cell()) |
|
|
|
netwithgrads.set_train(True) |
|
|
|
model = Model(netwithgrads) |
|
|
|
callback = ModelCallback() |
|
|
|
params = netwithloss.trainable_params() |
|
|
|
for param in params: |
|
|
|
value = param.default_input |
|
|
|
name = param.name |
|
|
|
if isinstance(value, Tensor): |
|
|
|
if name.split('.')[-1] in ['weight']: |
|
|
|
if name.split('.')[-3] in ['cls2']: |
|
|
|
logger.info("***************** BERT param name is 1 {}".format(name)) |
|
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
|
else: |
|
|
|
logger.info("***************** BERT param name is 2 {}".format(name)) |
|
|
|
tempshape = value.asnumpy().shape |
|
|
|
shape = (tempshape[1], tempshape[0]) |
|
|
|
weight_value = weight_variable(shape).asnumpy() |
|
|
|
param.default_input = Tensor(np.transpose(weight_value, [1, 0])) |
|
|
|
else: |
|
|
|
logger.info("***************** BERT param name is 3 {}".format(name)) |
|
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
|
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) |
|
|
|
|
|
|
|
# assertion occurs while the loss value, overflow state or loss_scale value is wrong |
|
|
|
loss_value = np.array(callback.loss_list) |
|
|
|
assert np.allclose(loss_value[0], 12.2065868, 0, 0.000001) |
|
|
|
|
|
|
|
expect_loss_value = [12.2065868, 11.8651543, 11.8282356, 11.8266964, 11.8210478, 12.4073524, 12.0055466, |
|
|
|
12.6212320, 12.2229223, 12.4272099] |
|
|
|
print("loss value: {}".format(loss_value)) |
|
|
|
assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) |
|
|
|
|
|
|
|
overflow = np.array(callback.overflow_list) |
|
|
|
expect_overflow = [False, False, False, True, False, False, False, True, False, False] |
|
|
|
print("overflow: {}".format(overflow)) |
|
|
|
assert (overflow == expect_overflow).all() |
|
|
|
|
|
|
|
loss_scale = np.array(callback.lossscale_list) |
|
|
|
expect_loss_scale = [65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0, 131072.0, 65536.0, 65536.0, 65536.0] |
|
|
|
print("loss scale: {}".format(loss_scale)) |
|
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
test_bert_percision() |