From: @huangbingjian Reviewed-by: @zh_qh,@zhunaipan Signed-off-by: @zh_qhtags/v1.2.0-rc1
| @@ -47,12 +47,7 @@ class LossCallBack(Callback): | |||
| raise ValueError("print_step must be int and >= 0.") | |||
| self._per_print_times = per_print_times | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| self.rank_id = rank_id | |||
| global time_stamp_init, time_stamp_first | |||
| @@ -62,54 +57,26 @@ class LossCallBack(Callback): | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| rpn_loss = cb_params.net_outputs[0].asnumpy() | |||
| rcnn_loss = cb_params.net_outputs[1].asnumpy() | |||
| rpn_cls_loss = cb_params.net_outputs[2].asnumpy() | |||
| rpn_reg_loss = cb_params.net_outputs[3].asnumpy() | |||
| rcnn_cls_loss = cb_params.net_outputs[4].asnumpy() | |||
| rcnn_reg_loss = cb_params.net_outputs[5].asnumpy() | |||
| loss = cb_params.net_outputs.asnumpy() | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.count += 1 | |||
| self.rpn_loss_sum += float(rpn_loss) | |||
| self.rcnn_loss_sum += float(rcnn_loss) | |||
| self.rpn_cls_loss_sum += float(rpn_cls_loss) | |||
| self.rpn_reg_loss_sum += float(rpn_reg_loss) | |||
| self.rcnn_cls_loss_sum += float(rcnn_cls_loss) | |||
| self.rcnn_reg_loss_sum += float(rcnn_reg_loss) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.loss_sum += float(loss) | |||
| if self.count >= 1: | |||
| global time_stamp_first | |||
| time_stamp_current = time.time() | |||
| rpn_loss = self.rpn_loss_sum / self.count | |||
| rcnn_loss = self.rcnn_loss_sum / self.count | |||
| rpn_cls_loss = self.rpn_cls_loss_sum / self.count | |||
| rpn_reg_loss = self.rpn_reg_loss_sum / self.count | |||
| rcnn_cls_loss = self.rcnn_cls_loss_sum / self.count | |||
| rcnn_reg_loss = self.rcnn_reg_loss_sum / self.count | |||
| total_loss = rpn_loss + rcnn_loss | |||
| total_loss = self.loss_sum / self.count | |||
| loss_file = open("./loss_{}.log".format(self.rank_id), "a+") | |||
| loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rcnn_loss: %.5f, rpn_cls_loss: %.5f, " | |||
| "rpn_reg_loss: %.5f, rcnn_cls_loss: %.5f, rcnn_reg_loss: %.5f, total_loss: %.5f" % | |||
| loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" % | |||
| (time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch, | |||
| rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, | |||
| rcnn_cls_loss, rcnn_reg_loss, total_loss)) | |||
| total_loss)) | |||
| loss_file.write("\n") | |||
| loss_file.close() | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| class LossNet(nn.Cell): | |||
| @@ -157,7 +124,6 @@ class TrainOneStepCell(nn.Cell): | |||
| Args: | |||
| network (Cell): The training network. | |||
| network_backbone (Cell): The forward network. | |||
| optimizer (Cell): Optimizer for updating the weights. | |||
| sens (Number): The adjust parameter. Default value is 1.0. | |||
| reduce_flag (bool): The reduce flag. Default value is False. | |||
| @@ -165,11 +131,10 @@ class TrainOneStepCell(nn.Cell): | |||
| degree (int): Device number. Default value is None. | |||
| """ | |||
| def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| super(TrainOneStepCell, self).__init__(auto_prefix=False) | |||
| self.network = network | |||
| self.network.set_grad() | |||
| self.backbone = network_backbone | |||
| self.weights = ParameterTuple(network.trainable_params()) | |||
| self.optimizer = optimizer | |||
| self.grad = C.GradOperation(get_by_list=True, | |||
| @@ -181,8 +146,8 @@ class TrainOneStepCell(nn.Cell): | |||
| def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num): | |||
| weights = self.weights | |||
| loss1, loss2, loss3, loss4, loss5, loss6 = self.backbone(x, img_shape, gt_bboxe, gt_label, gt_num) | |||
| loss = self.network(x, img_shape, gt_bboxe, gt_label, gt_num) | |||
| grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, self.sens) | |||
| if self.reduce_flag: | |||
| grads = self.grad_reducer(grads) | |||
| return F.depend(loss1, self.optimizer(grads)), loss2, loss3, loss4, loss5, loss6 | |||
| return F.depend(loss, self.optimizer(grads)) | |||
| @@ -120,10 +120,10 @@ if __name__ == '__main__': | |||
| weight_decay=config.weight_decay, loss_scale=config.loss_scale) | |||
| net_with_loss = WithLossCell(net, loss) | |||
| if args_opt.run_distribute: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True, | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, | |||
| mean=True, degree=device_num) | |||
| else: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale) | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) | |||
| time_cb = TimeMonitor(data_size=dataset_size) | |||
| loss_cb = LossCallBack(rank_id=rank) | |||
| @@ -47,12 +47,7 @@ class LossCallBack(Callback): | |||
| raise ValueError("print_step must be int and >= 0.") | |||
| self._per_print_times = per_print_times | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| self.rank_id = rank_id | |||
| global time_stamp_init, time_stamp_first | |||
| @@ -62,54 +57,26 @@ class LossCallBack(Callback): | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| rpn_loss = cb_params.net_outputs[0].asnumpy() | |||
| rcnn_loss = cb_params.net_outputs[1].asnumpy() | |||
| rpn_cls_loss = cb_params.net_outputs[2].asnumpy() | |||
| rpn_reg_loss = cb_params.net_outputs[3].asnumpy() | |||
| rcnn_cls_loss = cb_params.net_outputs[4].asnumpy() | |||
| rcnn_reg_loss = cb_params.net_outputs[5].asnumpy() | |||
| loss = cb_params.net_outputs.asnumpy() | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.count += 1 | |||
| self.rpn_loss_sum += float(rpn_loss) | |||
| self.rcnn_loss_sum += float(rcnn_loss) | |||
| self.rpn_cls_loss_sum += float(rpn_cls_loss) | |||
| self.rpn_reg_loss_sum += float(rpn_reg_loss) | |||
| self.rcnn_cls_loss_sum += float(rcnn_cls_loss) | |||
| self.rcnn_reg_loss_sum += float(rcnn_reg_loss) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.loss_sum += float(loss) | |||
| if self.count >= 1: | |||
| global time_stamp_first | |||
| time_stamp_current = time.time() | |||
| rpn_loss = self.rpn_loss_sum/self.count | |||
| rcnn_loss = self.rcnn_loss_sum/self.count | |||
| rpn_cls_loss = self.rpn_cls_loss_sum/self.count | |||
| rpn_reg_loss = self.rpn_reg_loss_sum/self.count | |||
| rcnn_cls_loss = self.rcnn_cls_loss_sum/self.count | |||
| rcnn_reg_loss = self.rcnn_reg_loss_sum/self.count | |||
| total_loss = rpn_loss + rcnn_loss | |||
| total_loss = self.loss_sum / self.count | |||
| loss_file = open("./loss_{}.log".format(self.rank_id), "a+") | |||
| loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rcnn_loss: %.5f, rpn_cls_loss: %.5f, " | |||
| "rpn_reg_loss: %.5f, rcnn_cls_loss: %.5f, rcnn_reg_loss: %.5f, total_loss: %.5f" % | |||
| loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" % | |||
| (time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch, | |||
| rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, | |||
| rcnn_cls_loss, rcnn_reg_loss, total_loss)) | |||
| total_loss)) | |||
| loss_file.write("\n") | |||
| loss_file.close() | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| class LossNet(nn.Cell): | |||
| @@ -155,18 +122,16 @@ class TrainOneStepCell(nn.Cell): | |||
| Args: | |||
| network (Cell): The training network. | |||
| network_backbone (Cell): The forward network. | |||
| optimizer (Cell): Optimizer for updating the weights. | |||
| sens (Number): The adjust parameter. Default value is 1.0. | |||
| reduce_flag (bool): The reduce flag. Default value is False. | |||
| mean (bool): Allreduce method. Default value is False. | |||
| degree (int): Device number. Default value is None. | |||
| """ | |||
| def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| super(TrainOneStepCell, self).__init__(auto_prefix=False) | |||
| self.network = network | |||
| self.network.set_grad() | |||
| self.backbone = network_backbone | |||
| self.weights = ParameterTuple(network.trainable_params()) | |||
| self.optimizer = optimizer | |||
| self.grad = C.GradOperation(get_by_list=True, | |||
| @@ -178,8 +143,8 @@ class TrainOneStepCell(nn.Cell): | |||
| def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num): | |||
| weights = self.weights | |||
| loss1, loss2, loss3, loss4, loss5, loss6 = self.backbone(x, img_shape, gt_bboxe, gt_label, gt_num) | |||
| loss = self.network(x, img_shape, gt_bboxe, gt_label, gt_num) | |||
| grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, self.sens) | |||
| if self.reduce_flag: | |||
| grads = self.grad_reducer(grads) | |||
| return F.depend(loss1, self.optimizer(grads)), loss2, loss3, loss4, loss5, loss6 | |||
| return F.depend(loss, self.optimizer(grads)) | |||
| @@ -159,10 +159,10 @@ if __name__ == '__main__': | |||
| weight_decay=config.weight_decay, loss_scale=config.loss_scale) | |||
| net_with_loss = WithLossCell(net, loss) | |||
| if args_opt.run_distribute: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True, | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, | |||
| mean=True, degree=device_num) | |||
| else: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale) | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) | |||
| time_cb = TimeMonitor(data_size=dataset_size) | |||
| loss_cb = LossCallBack(rank_id=rank) | |||
| @@ -46,13 +46,7 @@ class LossCallBack(Callback): | |||
| raise ValueError("print_step must be int and >= 0.") | |||
| self._per_print_times = per_print_times | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.rcnn_mask_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| self.rank_id = rank_id | |||
| global time_stamp_init, time_stamp_first | |||
| @@ -62,59 +56,26 @@ class LossCallBack(Callback): | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| rpn_loss = cb_params.net_outputs[0].asnumpy() | |||
| rcnn_loss = cb_params.net_outputs[1].asnumpy() | |||
| rpn_cls_loss = cb_params.net_outputs[2].asnumpy() | |||
| rpn_reg_loss = cb_params.net_outputs[3].asnumpy() | |||
| rcnn_cls_loss = cb_params.net_outputs[4].asnumpy() | |||
| rcnn_reg_loss = cb_params.net_outputs[5].asnumpy() | |||
| rcnn_mask_loss = cb_params.net_outputs[6].asnumpy() | |||
| loss = cb_params.net_outputs.asnumpy() | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.count += 1 | |||
| self.rpn_loss_sum += float(rpn_loss) | |||
| self.rcnn_loss_sum += float(rcnn_loss) | |||
| self.rpn_cls_loss_sum += float(rpn_cls_loss) | |||
| self.rpn_reg_loss_sum += float(rpn_reg_loss) | |||
| self.rcnn_cls_loss_sum += float(rcnn_cls_loss) | |||
| self.rcnn_reg_loss_sum += float(rcnn_reg_loss) | |||
| self.rcnn_mask_loss_sum += float(rcnn_mask_loss) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.loss_sum += float(loss) | |||
| if self.count >= 1: | |||
| global time_stamp_first | |||
| time_stamp_current = time.time() | |||
| rpn_loss = self.rpn_loss_sum/self.count | |||
| rcnn_loss = self.rcnn_loss_sum/self.count | |||
| rpn_cls_loss = self.rpn_cls_loss_sum/self.count | |||
| rpn_reg_loss = self.rpn_reg_loss_sum/self.count | |||
| rcnn_cls_loss = self.rcnn_cls_loss_sum/self.count | |||
| rcnn_reg_loss = self.rcnn_reg_loss_sum/self.count | |||
| rcnn_mask_loss = self.rcnn_mask_loss_sum/self.count | |||
| total_loss = rpn_loss + rcnn_loss | |||
| total_loss = self.loss_sum / self.count | |||
| loss_file = open("./loss_{}.log".format(self.rank_id), "a+") | |||
| loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rcnn_loss: %.5f, rpn_cls_loss: %.5f, " | |||
| "rpn_reg_loss: %.5f, rcnn_cls_loss: %.5f, rcnn_reg_loss: %.5f, rcnn_mask_loss: %.5f, " | |||
| "total_loss: %.5f" % | |||
| loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" % | |||
| (time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch, | |||
| rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, | |||
| rcnn_cls_loss, rcnn_reg_loss, rcnn_mask_loss, total_loss)) | |||
| total_loss)) | |||
| loss_file.write("\n") | |||
| loss_file.close() | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.rcnn_mask_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| class LossNet(nn.Cell): | |||
| """MaskRcnn loss method""" | |||
| @@ -159,18 +120,16 @@ class TrainOneStepCell(nn.Cell): | |||
| Args: | |||
| network (Cell): The training network. | |||
| network_backbone (Cell): The forward network. | |||
| optimizer (Cell): Optimizer for updating the weights. | |||
| sens (Number): The adjust parameter. Default value is 1.0. | |||
| reduce_flag (bool): The reduce flag. Default value is False. | |||
| mean (bool): Allreduce method. Default value is False. | |||
| degree (int): Device number. Default value is None. | |||
| """ | |||
| def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| super(TrainOneStepCell, self).__init__(auto_prefix=False) | |||
| self.network = network | |||
| self.network.set_grad() | |||
| self.backbone = network_backbone | |||
| self.weights = ParameterTuple(network.trainable_params()) | |||
| self.optimizer = optimizer | |||
| self.grad = C.GradOperation(get_by_list=True, | |||
| @@ -183,10 +142,9 @@ class TrainOneStepCell(nn.Cell): | |||
| def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask): | |||
| weights = self.weights | |||
| loss1, loss2, loss3, loss4, loss5, loss6, loss7 = self.backbone(x, img_shape, gt_bboxe, gt_label, | |||
| gt_num, gt_mask) | |||
| loss = self.network(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask) | |||
| grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask, self.sens) | |||
| if self.reduce_flag: | |||
| grads = self.grad_reducer(grads) | |||
| return F.depend(loss1, self.optimizer(grads)), loss2, loss3, loss4, loss5, loss6, loss7 | |||
| return F.depend(loss, self.optimizer(grads)) | |||
| @@ -124,10 +124,10 @@ if __name__ == '__main__': | |||
| net_with_loss = WithLossCell(net, loss) | |||
| if args_opt.run_distribute: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True, | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, | |||
| mean=True, degree=device_num) | |||
| else: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale) | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) | |||
| time_cb = TimeMonitor(data_size=dataset_size) | |||
| loss_cb = LossCallBack(rank_id=rank) | |||
| @@ -75,13 +75,7 @@ class LossCallBack(Callback): | |||
| raise ValueError("print_step must be int and >= 0.") | |||
| self._per_print_times = per_print_times | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.rcnn_mask_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| self.rank_id = rank_id | |||
| global time_stamp_init, time_stamp_first | |||
| @@ -91,59 +85,26 @@ class LossCallBack(Callback): | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| rpn_loss = cb_params.net_outputs[0].asnumpy() | |||
| rcnn_loss = cb_params.net_outputs[1].asnumpy() | |||
| rpn_cls_loss = cb_params.net_outputs[2].asnumpy() | |||
| rpn_reg_loss = cb_params.net_outputs[3].asnumpy() | |||
| rcnn_cls_loss = cb_params.net_outputs[4].asnumpy() | |||
| rcnn_reg_loss = cb_params.net_outputs[5].asnumpy() | |||
| rcnn_mask_loss = cb_params.net_outputs[6].asnumpy() | |||
| loss = cb_params.net_outputs.asnumpy() | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.count += 1 | |||
| self.rpn_loss_sum += float(rpn_loss) | |||
| self.rcnn_loss_sum += float(rcnn_loss) | |||
| self.rpn_cls_loss_sum += float(rpn_cls_loss) | |||
| self.rpn_reg_loss_sum += float(rpn_reg_loss) | |||
| self.rcnn_cls_loss_sum += float(rcnn_cls_loss) | |||
| self.rcnn_reg_loss_sum += float(rcnn_reg_loss) | |||
| self.rcnn_mask_loss_sum += float(rcnn_mask_loss) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| self.loss_sum += float(loss) | |||
| if self.count >= 1: | |||
| global time_stamp_first | |||
| time_stamp_current = time.time() | |||
| rpn_loss = self.rpn_loss_sum/self.count | |||
| rcnn_loss = self.rcnn_loss_sum/self.count | |||
| rpn_cls_loss = self.rpn_cls_loss_sum/self.count | |||
| rpn_reg_loss = self.rpn_reg_loss_sum/self.count | |||
| rcnn_cls_loss = self.rcnn_cls_loss_sum/self.count | |||
| rcnn_reg_loss = self.rcnn_reg_loss_sum/self.count | |||
| rcnn_mask_loss = self.rcnn_mask_loss_sum/self.count | |||
| total_loss = rpn_loss + rcnn_loss | |||
| total_loss = self.loss_sum/self.count | |||
| loss_file = open("./loss_{}.log".format(self.rank_id), "a+") | |||
| loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rcnn_loss: %.5f, rpn_cls_loss: %.5f, " | |||
| "rpn_reg_loss: %.5f, rcnn_cls_loss: %.5f, rcnn_reg_loss: %.5f, rcnn_mask_loss: %.5f, " | |||
| "total_loss: %.5f" % | |||
| loss_file.write("%lu epoch: %s step: %s ,total_loss: %.5f" % | |||
| (time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch, | |||
| rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, | |||
| rcnn_cls_loss, rcnn_reg_loss, rcnn_mask_loss, total_loss)) | |||
| total_loss)) | |||
| loss_file.write("\n") | |||
| loss_file.close() | |||
| self.count = 0 | |||
| self.rpn_loss_sum = 0 | |||
| self.rcnn_loss_sum = 0 | |||
| self.rpn_cls_loss_sum = 0 | |||
| self.rpn_reg_loss_sum = 0 | |||
| self.rcnn_cls_loss_sum = 0 | |||
| self.rcnn_reg_loss_sum = 0 | |||
| self.rcnn_mask_loss_sum = 0 | |||
| self.loss_sum = 0 | |||
| class LossNet(nn.Cell): | |||
| """MaskRcnn loss method""" | |||
| @@ -188,18 +149,16 @@ class TrainOneStepCell(nn.Cell): | |||
| Args: | |||
| network (Cell): The training network. | |||
| network_backbone (Cell): The forward network. | |||
| optimizer (Cell): Optimizer for updating the weights. | |||
| sens (Number): The adjust parameter. Default value is 1.0. | |||
| reduce_flag (bool): The reduce flag. Default value is False. | |||
| mean (bool): Allreduce method. Default value is False. | |||
| degree (int): Device number. Default value is None. | |||
| """ | |||
| def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): | |||
| super(TrainOneStepCell, self).__init__(auto_prefix=False) | |||
| self.network = network | |||
| self.network.set_grad() | |||
| self.backbone = network_backbone | |||
| self.weights = ParameterTuple(network.trainable_params()) | |||
| self.optimizer = optimizer | |||
| self.grad = C.GradOperation(get_by_list=True, | |||
| @@ -212,10 +171,9 @@ class TrainOneStepCell(nn.Cell): | |||
| def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask): | |||
| weights = self.weights | |||
| loss1, loss2, loss3, loss4, loss5, loss6, loss7 = self.backbone(x, img_shape, gt_bboxe, gt_label, | |||
| gt_num, gt_mask) | |||
| loss = self.network(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask) | |||
| grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask, self.sens) | |||
| if self.reduce_flag: | |||
| grads = self.grad_reducer(grads) | |||
| grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) | |||
| return F.depend(loss1, self.optimizer(grads)), loss2, loss3, loss4, loss5, loss6, loss7 | |||
| return F.depend(loss, self.optimizer(grads)) | |||
| @@ -123,10 +123,10 @@ if __name__ == '__main__': | |||
| net_with_loss = WithLossCell(net, loss) | |||
| if args_opt.run_distribute: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True, | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, | |||
| mean=True, degree=device_num) | |||
| else: | |||
| net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale) | |||
| net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) | |||
| time_cb = TimeMonitor(data_size=dataset_size) | |||
| loss_cb = LossCallBack(rank_id=rank) | |||