Browse Source

remove import probability from nn/__init__.py

tags/v0.7.0-beta
Xun Deng 5 years ago
parent
commit
e94d91ba95
13 changed files with 144 additions and 137 deletions
  1. +1
    -2
      mindspore/nn/__init__.py
  2. +2
    -5
      mindspore/nn/probability/__init__.py
  3. +13
    -12
      tests/st/ops/ascend/test_distribution/test_bernoulli.py
  4. +13
    -12
      tests/st/ops/ascend/test_distribution/test_exponential.py
  5. +12
    -11
      tests/st/ops/ascend/test_distribution/test_geometric.py
  6. +13
    -12
      tests/st/ops/ascend/test_distribution/test_normal.py
  7. +2
    -1
      tests/st/ops/ascend/test_distribution/test_normal_new_api.py
  8. +13
    -12
      tests/st/ops/ascend/test_distribution/test_uniform.py
  9. +15
    -14
      tests/ut/python/nn/distribution/test_bernoulli.py
  10. +15
    -14
      tests/ut/python/nn/distribution/test_exponential.py
  11. +15
    -14
      tests/ut/python/nn/distribution/test_geometric.py
  12. +14
    -13
      tests/ut/python/nn/distribution/test_normal.py
  13. +16
    -15
      tests/ut/python/nn/distribution/test_uniform.py

+ 1
- 2
mindspore/nn/__init__.py View File

@@ -24,7 +24,6 @@ from .loss import *
from .optim import * from .optim import *
from .metrics import * from .metrics import *
from .wrap import * from .wrap import *
from .probability import *




__all__ = ["Cell", "GraphKernel"] __all__ = ["Cell", "GraphKernel"]
@@ -33,7 +32,7 @@ __all__.extend(loss.__all__)
__all__.extend(optim.__all__) __all__.extend(optim.__all__)
__all__.extend(metrics.__all__) __all__.extend(metrics.__all__)
__all__.extend(wrap.__all__) __all__.extend(wrap.__all__)
__all__.extend(probability.__all__)




__all__.sort() __all__.sort()

+ 2
- 5
mindspore/nn/probability/__init__.py View File

@@ -15,10 +15,7 @@
""" """
Probability. Probability.


The high-level components(Distributions) used to construct the probabilistic network.
The high-level components used to construct the probabilistic network.
""" """


from .distribution import *

__all__ = []
__all__.extend(distribution.__all__)
from . import distribution

+ 13
- 12
tests/st/ops/ascend/test_distribution/test_bernoulli.py View File

@@ -12,11 +12,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""test cases for bernoulli distribution"""
"""test cases for Bernoulli distribution"""
import numpy as np import numpy as np
from scipy import stats from scipy import stats
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import dtype from mindspore import dtype
@@ -29,7 +30,7 @@ class Prob(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Prob, self).__init__() super(Prob, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -54,7 +55,7 @@ class LogProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogProb, self).__init__() super(LogProb, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -78,7 +79,7 @@ class KL(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(KL, self).__init__() super(KL, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -104,7 +105,7 @@ class Basics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Basics, self).__init__() super(Basics, self).__init__()
self.b = nn.Bernoulli([0.3, 0.5, 0.7], dtype=dtype.int32)
self.b = msd.Bernoulli([0.3, 0.5, 0.7], dtype=dtype.int32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -130,7 +131,7 @@ class Sampling(nn.Cell):
""" """
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0):
super(Sampling, self).__init__() super(Sampling, self).__init__()
self.b = nn.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
self.b = msd.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
self.shape = shape self.shape = shape


@ms_function @ms_function
@@ -152,7 +153,7 @@ class CDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CDF, self).__init__() super(CDF, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -177,7 +178,7 @@ class LogCDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogCDF, self).__init__() super(LogCDF, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -202,7 +203,7 @@ class SF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(SF, self).__init__() super(SF, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -227,7 +228,7 @@ class LogSF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogSF, self).__init__() super(LogSF, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -251,7 +252,7 @@ class EntropyH(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(EntropyH, self).__init__() super(EntropyH, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -274,7 +275,7 @@ class CrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CrossEntropy, self).__init__() super(CrossEntropy, self).__init__()
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):


+ 13
- 12
tests/st/ops/ascend/test_distribution/test_exponential.py View File

@@ -12,11 +12,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""test cases for exponential distribution"""
"""test cases for Exponential distribution"""
import numpy as np import numpy as np
from scipy import stats from scipy import stats
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import dtype from mindspore import dtype
@@ -29,7 +30,7 @@ class Prob(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Prob, self).__init__() super(Prob, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -53,7 +54,7 @@ class LogProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogProb, self).__init__() super(LogProb, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -77,7 +78,7 @@ class KL(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(KL, self).__init__() super(KL, self).__init__()
self.e = nn.Exponential([1.5], dtype=dtype.float32)
self.e = msd.Exponential([1.5], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -101,7 +102,7 @@ class Basics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Basics, self).__init__() super(Basics, self).__init__()
self.e = nn.Exponential([0.5], dtype=dtype.float32)
self.e = msd.Exponential([0.5], dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -127,7 +128,7 @@ class Sampling(nn.Cell):
""" """
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0):
super(Sampling, self).__init__() super(Sampling, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
self.shape = shape self.shape = shape


@ms_function @ms_function
@@ -151,7 +152,7 @@ class CDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CDF, self).__init__() super(CDF, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -175,7 +176,7 @@ class LogCDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogCDF, self).__init__() super(LogCDF, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -199,7 +200,7 @@ class SF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(SF, self).__init__() super(SF, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -223,7 +224,7 @@ class LogSF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogSF, self).__init__() super(LogSF, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -247,7 +248,7 @@ class EntropyH(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(EntropyH, self).__init__() super(EntropyH, self).__init__()
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -270,7 +271,7 @@ class CrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CrossEntropy, self).__init__() super(CrossEntropy, self).__init__()
self.e = nn.Exponential([1.0], dtype=dtype.float32)
self.e = msd.Exponential([1.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):


+ 12
- 11
tests/st/ops/ascend/test_distribution/test_geometric.py View File

@@ -17,6 +17,7 @@ import numpy as np
from scipy import stats from scipy import stats
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import dtype from mindspore import dtype
@@ -29,7 +30,7 @@ class Prob(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Prob, self).__init__() super(Prob, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -53,7 +54,7 @@ class LogProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogProb, self).__init__() super(LogProb, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -77,7 +78,7 @@ class KL(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(KL, self).__init__() super(KL, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -103,7 +104,7 @@ class Basics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Basics, self).__init__() super(Basics, self).__init__()
self.g = nn.Geometric([0.5, 0.5], dtype=dtype.int32)
self.g = msd.Geometric([0.5, 0.5], dtype=dtype.int32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -129,7 +130,7 @@ class Sampling(nn.Cell):
""" """
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0):
super(Sampling, self).__init__() super(Sampling, self).__init__()
self.g = nn.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32)
self.g = msd.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32)
self.shape = shape self.shape = shape


@ms_function @ms_function
@@ -151,7 +152,7 @@ class CDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CDF, self).__init__() super(CDF, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -175,7 +176,7 @@ class LogCDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogCDF, self).__init__() super(LogCDF, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -199,7 +200,7 @@ class SF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(SF, self).__init__() super(SF, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -223,7 +224,7 @@ class LogSF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogSF, self).__init__() super(LogSF, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -247,7 +248,7 @@ class EntropyH(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(EntropyH, self).__init__() super(EntropyH, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -270,7 +271,7 @@ class CrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CrossEntropy, self).__init__() super(CrossEntropy, self).__init__()
self.g = nn.Geometric(0.7, dtype=dtype.int32)
self.g = msd.Geometric(0.7, dtype=dtype.int32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):


+ 13
- 12
tests/st/ops/ascend/test_distribution/test_normal.py View File

@@ -12,11 +12,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""test cases for normal distribution"""
"""test cases for Normal distribution"""
import numpy as np import numpy as np
from scipy import stats from scipy import stats
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import dtype from mindspore import dtype
@@ -29,7 +30,7 @@ class Prob(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Prob, self).__init__() super(Prob, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -52,7 +53,7 @@ class LogProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogProb, self).__init__() super(LogProb, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -76,7 +77,7 @@ class KL(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(KL, self).__init__() super(KL, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_, y_): def construct(self, x_, y_):
@@ -110,7 +111,7 @@ class Basics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Basics, self).__init__() super(Basics, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -135,7 +136,7 @@ class Sampling(nn.Cell):
""" """
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0):
super(Sampling, self).__init__() super(Sampling, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
self.shape = shape self.shape = shape


@ms_function @ms_function
@@ -160,7 +161,7 @@ class CDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CDF, self).__init__() super(CDF, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -184,7 +185,7 @@ class LogCDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogCDF, self).__init__() super(LogCDF, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -207,7 +208,7 @@ class SF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(SF, self).__init__() super(SF, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -230,7 +231,7 @@ class LogSF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogSF, self).__init__() super(LogSF, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -253,7 +254,7 @@ class EntropyH(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(EntropyH, self).__init__() super(EntropyH, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -276,7 +277,7 @@ class CrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CrossEntropy, self).__init__() super(CrossEntropy, self).__init__()
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_, y_): def construct(self, x_, y_):


+ 2
- 1
tests/st/ops/ascend/test_distribution/test_normal_new_api.py View File

@@ -16,6 +16,7 @@
import numpy as np import numpy as np
from scipy import stats from scipy import stats
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor
import mindspore.context as context import mindspore.context as context
@@ -30,7 +31,7 @@ class Net(nn.Cell):


def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.normal = nn.Normal(0., 1., dtype=dtype.float32)
self.normal = msd.Normal(0., 1., dtype=dtype.float32)


def construct(self, x_, y_): def construct(self, x_, y_):
kl = self.normal.kl_loss('kl_loss', 'Normal', x_, y_) kl = self.normal.kl_loss('kl_loss', 'Normal', x_, y_)


+ 13
- 12
tests/st/ops/ascend/test_distribution/test_uniform.py View File

@@ -12,11 +12,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""test cases for uniform distribution"""
"""test cases for Uniform distribution"""
import numpy as np import numpy as np
from scipy import stats from scipy import stats
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import dtype from mindspore import dtype
@@ -29,7 +30,7 @@ class Prob(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Prob, self).__init__() super(Prob, self).__init__()
self.u = nn.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -53,7 +54,7 @@ class LogProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogProb, self).__init__() super(LogProb, self).__init__()
self.u = nn.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -77,7 +78,7 @@ class KL(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(KL, self).__init__() super(KL, self).__init__()
self.u = nn.Uniform([0.0], [1.5], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_, y_): def construct(self, x_, y_):
@@ -103,7 +104,7 @@ class Basics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(Basics, self).__init__() super(Basics, self).__init__()
self.u = nn.Uniform([0.0], [3.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [3.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -127,7 +128,7 @@ class Sampling(nn.Cell):
""" """
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0):
super(Sampling, self).__init__() super(Sampling, self).__init__()
self.u = nn.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32)
self.u = msd.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32)
self.shape = shape self.shape = shape


@ms_function @ms_function
@@ -152,7 +153,7 @@ class CDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CDF, self).__init__() super(CDF, self).__init__()
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -176,7 +177,7 @@ class LogCDF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogCDF, self).__init__() super(LogCDF, self).__init__()
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -188,7 +189,7 @@ class SF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(SF, self).__init__() super(SF, self).__init__()
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -200,7 +201,7 @@ class LogSF(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(LogSF, self).__init__() super(LogSF, self).__init__()
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_): def construct(self, x_):
@@ -212,7 +213,7 @@ class EntropyH(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(EntropyH, self).__init__() super(EntropyH, self).__init__()
self.u = nn.Uniform([0.0], [1.0, 2.0], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.0, 2.0], dtype=dtype.float32)


@ms_function @ms_function
def construct(self): def construct(self):
@@ -235,7 +236,7 @@ class CrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(CrossEntropy, self).__init__() super(CrossEntropy, self).__init__()
self.u = nn.Uniform([0.0], [1.5], dtype=dtype.float32)
self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32)


@ms_function @ms_function
def construct(self, x_, y_): def construct(self, x_, y_):


+ 15
- 14
tests/ut/python/nn/distribution/test_bernoulli.py View File

@@ -13,11 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Test nn.Distribution.Bernoulli.
Test nn.probability.distribution.Bernoulli.
""" """
import pytest import pytest


import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor


@@ -25,19 +26,19 @@ def test_arguments():
""" """
Args passing during initialization. Args passing during initialization.
""" """
b = nn.Bernoulli()
assert isinstance(b, nn.Distribution)
b = nn.Bernoulli([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
assert isinstance(b, nn.Distribution)
b = msd.Bernoulli()
assert isinstance(b, msd.Distribution)
b = msd.Bernoulli([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
assert isinstance(b, msd.Distribution)


def test_prob(): def test_prob():
""" """
Invalid probability. Invalid probability.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Bernoulli([-0.1], dtype=dtype.int32)
msd.Bernoulli([-0.1], dtype=dtype.int32)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Bernoulli([1.1], dtype=dtype.int32)
msd.Bernoulli([1.1], dtype=dtype.int32)


class BernoulliProb(nn.Cell): class BernoulliProb(nn.Cell):
""" """
@@ -45,7 +46,7 @@ class BernoulliProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(BernoulliProb, self).__init__() super(BernoulliProb, self).__init__()
self.b = nn.Bernoulli(0.5, dtype=dtype.int32)
self.b = msd.Bernoulli(0.5, dtype=dtype.int32)


def construct(self, value): def construct(self, value):
prob = self.b('prob', value) prob = self.b('prob', value)
@@ -71,7 +72,7 @@ class BernoulliProb1(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(BernoulliProb1, self).__init__() super(BernoulliProb1, self).__init__()
self.b = nn.Bernoulli(dtype=dtype.int32)
self.b = msd.Bernoulli(dtype=dtype.int32)


def construct(self, value, probs): def construct(self, value, probs):
prob = self.b('prob', value, probs) prob = self.b('prob', value, probs)
@@ -98,8 +99,8 @@ class BernoulliKl(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(BernoulliKl, self).__init__() super(BernoulliKl, self).__init__()
self.b1 = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b2 = nn.Bernoulli(dtype=dtype.int32)
self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
self.b2 = msd.Bernoulli(dtype=dtype.int32)


def construct(self, probs_b, probs_a): def construct(self, probs_b, probs_a):
kl1 = self.b1('kl_loss', 'Bernoulli', probs_b) kl1 = self.b1('kl_loss', 'Bernoulli', probs_b)
@@ -122,8 +123,8 @@ class BernoulliCrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(BernoulliCrossEntropy, self).__init__() super(BernoulliCrossEntropy, self).__init__()
self.b1 = nn.Bernoulli(0.7, dtype=dtype.int32)
self.b2 = nn.Bernoulli(dtype=dtype.int32)
self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
self.b2 = msd.Bernoulli(dtype=dtype.int32)


def construct(self, probs_b, probs_a): def construct(self, probs_b, probs_a):
h1 = self.b1('cross_entropy', 'Bernoulli', probs_b) h1 = self.b1('cross_entropy', 'Bernoulli', probs_b)
@@ -146,7 +147,7 @@ class BernoulliBasics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(BernoulliBasics, self).__init__() super(BernoulliBasics, self).__init__()
self.b = nn.Bernoulli([0.3, 0.5], dtype=dtype.int32)
self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)


def construct(self): def construct(self):
mean = self.b('mean') mean = self.b('mean')


+ 15
- 14
tests/ut/python/nn/distribution/test_exponential.py View File

@@ -13,11 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Test nn.Distribution.Exponential.
Test nn.probability.distribution.Exponential.
""" """
import pytest import pytest


import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor


@@ -26,19 +27,19 @@ def test_arguments():
""" """
Args passing during initialization. Args passing during initialization.
""" """
e = nn.Exponential()
assert isinstance(e, nn.Distribution)
e = nn.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(e, nn.Distribution)
e = msd.Exponential()
assert isinstance(e, msd.Distribution)
e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(e, msd.Distribution)


def test_rate(): def test_rate():
""" """
Invalid rate. Invalid rate.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Exponential([-0.1], dtype=dtype.float32)
msd.Exponential([-0.1], dtype=dtype.float32)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Exponential([0.0], dtype=dtype.float32)
msd.Exponential([0.0], dtype=dtype.float32)


class ExponentialProb(nn.Cell): class ExponentialProb(nn.Cell):
""" """
@@ -46,7 +47,7 @@ class ExponentialProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(ExponentialProb, self).__init__() super(ExponentialProb, self).__init__()
self.e = nn.Exponential(0.5, dtype=dtype.float32)
self.e = msd.Exponential(0.5, dtype=dtype.float32)


def construct(self, value): def construct(self, value):
prob = self.e('prob', value) prob = self.e('prob', value)
@@ -72,7 +73,7 @@ class ExponentialProb1(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(ExponentialProb1, self).__init__() super(ExponentialProb1, self).__init__()
self.e = nn.Exponential(dtype=dtype.float32)
self.e = msd.Exponential(dtype=dtype.float32)


def construct(self, value, rate): def construct(self, value, rate):
prob = self.e('prob', value, rate) prob = self.e('prob', value, rate)
@@ -99,8 +100,8 @@ class ExponentialKl(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(ExponentialKl, self).__init__() super(ExponentialKl, self).__init__()
self.e1 = nn.Exponential(0.7, dtype=dtype.float32)
self.e2 = nn.Exponential(dtype=dtype.float32)
self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
self.e2 = msd.Exponential(dtype=dtype.float32)


def construct(self, rate_b, rate_a): def construct(self, rate_b, rate_a):
kl1 = self.e1('kl_loss', 'Exponential', rate_b) kl1 = self.e1('kl_loss', 'Exponential', rate_b)
@@ -123,8 +124,8 @@ class ExponentialCrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(ExponentialCrossEntropy, self).__init__() super(ExponentialCrossEntropy, self).__init__()
self.e1 = nn.Exponential(0.3, dtype=dtype.float32)
self.e2 = nn.Exponential(dtype=dtype.float32)
self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
self.e2 = msd.Exponential(dtype=dtype.float32)


def construct(self, rate_b, rate_a): def construct(self, rate_b, rate_a):
h1 = self.e1('cross_entropy', 'Exponential', rate_b) h1 = self.e1('cross_entropy', 'Exponential', rate_b)
@@ -147,7 +148,7 @@ class ExponentialBasics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(ExponentialBasics, self).__init__() super(ExponentialBasics, self).__init__()
self.e = nn.Exponential([0.3, 0.5], dtype=dtype.float32)
self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)


def construct(self): def construct(self):
mean = self.e('mean') mean = self.e('mean')


+ 15
- 14
tests/ut/python/nn/distribution/test_geometric.py View File

@@ -13,11 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Test nn.Distribution.Geometric.
Test nn.probability.distribution.Geometric.
""" """
import pytest import pytest


import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor


@@ -26,19 +27,19 @@ def test_arguments():
""" """
Args passing during initialization. Args passing during initialization.
""" """
g = nn.Geometric()
assert isinstance(g, nn.Distribution)
g = nn.Geometric([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
assert isinstance(g, nn.Distribution)
g = msd.Geometric()
assert isinstance(g, msd.Distribution)
g = msd.Geometric([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
assert isinstance(g, msd.Distribution)


def test_prob(): def test_prob():
""" """
Invalid probability. Invalid probability.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Geometric([-0.1], dtype=dtype.int32)
msd.Geometric([-0.1], dtype=dtype.int32)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Geometric([1.1], dtype=dtype.int32)
msd.Geometric([1.1], dtype=dtype.int32)


class GeometricProb(nn.Cell): class GeometricProb(nn.Cell):
""" """
@@ -46,7 +47,7 @@ class GeometricProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(GeometricProb, self).__init__() super(GeometricProb, self).__init__()
self.g = nn.Geometric(0.5, dtype=dtype.int32)
self.g = msd.Geometric(0.5, dtype=dtype.int32)


def construct(self, value): def construct(self, value):
prob = self.g('prob', value) prob = self.g('prob', value)
@@ -72,7 +73,7 @@ class GeometricProb1(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(GeometricProb1, self).__init__() super(GeometricProb1, self).__init__()
self.g = nn.Geometric(dtype=dtype.int32)
self.g = msd.Geometric(dtype=dtype.int32)


def construct(self, value, probs): def construct(self, value, probs):
prob = self.g('prob', value, probs) prob = self.g('prob', value, probs)
@@ -100,8 +101,8 @@ class GeometricKl(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(GeometricKl, self).__init__() super(GeometricKl, self).__init__()
self.g1 = nn.Geometric(0.7, dtype=dtype.int32)
self.g2 = nn.Geometric(dtype=dtype.int32)
self.g1 = msd.Geometric(0.7, dtype=dtype.int32)
self.g2 = msd.Geometric(dtype=dtype.int32)


def construct(self, probs_b, probs_a): def construct(self, probs_b, probs_a):
kl1 = self.g1('kl_loss', 'Geometric', probs_b) kl1 = self.g1('kl_loss', 'Geometric', probs_b)
@@ -124,8 +125,8 @@ class GeometricCrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(GeometricCrossEntropy, self).__init__() super(GeometricCrossEntropy, self).__init__()
self.g1 = nn.Geometric(0.3, dtype=dtype.int32)
self.g2 = nn.Geometric(dtype=dtype.int32)
self.g1 = msd.Geometric(0.3, dtype=dtype.int32)
self.g2 = msd.Geometric(dtype=dtype.int32)


def construct(self, probs_b, probs_a): def construct(self, probs_b, probs_a):
h1 = self.g1('cross_entropy', 'Geometric', probs_b) h1 = self.g1('cross_entropy', 'Geometric', probs_b)
@@ -148,7 +149,7 @@ class GeometricBasics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(GeometricBasics, self).__init__() super(GeometricBasics, self).__init__()
self.g = nn.Geometric([0.3, 0.5], dtype=dtype.int32)
self.g = msd.Geometric([0.3, 0.5], dtype=dtype.int32)


def construct(self): def construct(self):
mean = self.g('mean') mean = self.g('mean')


+ 14
- 13
tests/ut/python/nn/distribution/test_normal.py View File

@@ -13,12 +13,13 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Test nn.Distribution.Normal.
Test nn.probability.distribution.Normal.
""" """
import numpy as np import numpy as np
import pytest import pytest


import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor


@@ -27,17 +28,17 @@ def test_normal_shape_errpr():
Invalid shapes. Invalid shapes.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
msd.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)




def test_arguments(): def test_arguments():
""" """
args passing during initialization. args passing during initialization.
""" """
n = nn.Normal()
assert isinstance(n, nn.Distribution)
n = nn.Normal([3.0], [4.0], dtype=dtype.float32)
assert isinstance(n, nn.Distribution)
n = msd.Normal()
assert isinstance(n, msd.Distribution)
n = msd.Normal([3.0], [4.0], dtype=dtype.float32)
assert isinstance(n, msd.Distribution)




class NormalProb(nn.Cell): class NormalProb(nn.Cell):
@@ -46,7 +47,7 @@ class NormalProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(NormalProb, self).__init__() super(NormalProb, self).__init__()
self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
self.normal = msd.Normal(3.0, 4.0, dtype=dtype.float32)


def construct(self, value): def construct(self, value):
prob = self.normal('prob', value) prob = self.normal('prob', value)
@@ -73,7 +74,7 @@ class NormalProb1(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(NormalProb1, self).__init__() super(NormalProb1, self).__init__()
self.normal = nn.Normal()
self.normal = msd.Normal()


def construct(self, value, mean, sd): def construct(self, value, mean, sd):
prob = self.normal('prob', value, mean, sd) prob = self.normal('prob', value, mean, sd)
@@ -101,8 +102,8 @@ class NormalKl(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(NormalKl, self).__init__() super(NormalKl, self).__init__()
self.n1 = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = nn.Normal(dtype=dtype.float32)
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.Normal(dtype=dtype.float32)


def construct(self, mean_b, sd_b, mean_a, sd_a): def construct(self, mean_b, sd_b, mean_a, sd_a):
kl1 = self.n1('kl_loss', 'Normal', mean_b, sd_b) kl1 = self.n1('kl_loss', 'Normal', mean_b, sd_b)
@@ -127,8 +128,8 @@ class NormalCrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(NormalCrossEntropy, self).__init__() super(NormalCrossEntropy, self).__init__()
self.n1 = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = nn.Normal(dtype=dtype.float32)
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.Normal(dtype=dtype.float32)


def construct(self, mean_b, sd_b, mean_a, sd_a): def construct(self, mean_b, sd_b, mean_a, sd_a):
h1 = self.n1('cross_entropy', 'Normal', mean_b, sd_b) h1 = self.n1('cross_entropy', 'Normal', mean_b, sd_b)
@@ -153,7 +154,7 @@ class NormalBasics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(NormalBasics, self).__init__() super(NormalBasics, self).__init__()
self.n = nn.Normal(3.0, 4.0, dtype=dtype.float32)
self.n = msd.Normal(3.0, 4.0, dtype=dtype.float32)


def construct(self): def construct(self):
mean = self.n('mean') mean = self.n('mean')


+ 16
- 15
tests/ut/python/nn/distribution/test_uniform.py View File

@@ -13,12 +13,13 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Test nn.Distribution.Uniform.
Test nn.probability.distribution.Uniform.
""" """
import numpy as np import numpy as np
import pytest import pytest


import mindspore.nn as nn import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype from mindspore import dtype
from mindspore import Tensor from mindspore import Tensor


@@ -27,17 +28,17 @@ def test_uniform_shape_errpr():
Invalid shapes. Invalid shapes.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)




def test_arguments(): def test_arguments():
""" """
Args passing during initialization. Args passing during initialization.
""" """
u = nn.Uniform()
assert isinstance(u, nn.Distribution)
u = nn.Uniform([3.0], [4.0], dtype=dtype.float32)
assert isinstance(u, nn.Distribution)
u = msd.Uniform()
assert isinstance(u, msd.Distribution)
u = msd.Uniform([3.0], [4.0], dtype=dtype.float32)
assert isinstance(u, msd.Distribution)




def test_invalid_range(): def test_invalid_range():
@@ -45,9 +46,9 @@ def test_invalid_range():
Test range of uniform distribution. Test range of uniform distribution.
""" """
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Uniform(0.0, 0.0, dtype=dtype.float32)
msd.Uniform(0.0, 0.0, dtype=dtype.float32)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nn.Uniform(1.0, 0.0, dtype=dtype.float32)
msd.Uniform(1.0, 0.0, dtype=dtype.float32)




class UniformProb(nn.Cell): class UniformProb(nn.Cell):
@@ -56,7 +57,7 @@ class UniformProb(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(UniformProb, self).__init__() super(UniformProb, self).__init__()
self.u = nn.Uniform(3.0, 4.0, dtype=dtype.float32)
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)


def construct(self, value): def construct(self, value):
prob = self.u('prob', value) prob = self.u('prob', value)
@@ -82,7 +83,7 @@ class UniformProb1(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(UniformProb1, self).__init__() super(UniformProb1, self).__init__()
self.u = nn.Uniform(dtype=dtype.float32)
self.u = msd.Uniform(dtype=dtype.float32)


def construct(self, value, low, high): def construct(self, value, low, high):
prob = self.u('prob', value, low, high) prob = self.u('prob', value, low, high)
@@ -110,8 +111,8 @@ class UniformKl(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(UniformKl, self).__init__() super(UniformKl, self).__init__()
self.u1 = nn.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = nn.Uniform(dtype=dtype.float32)
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = msd.Uniform(dtype=dtype.float32)


def construct(self, low_b, high_b, low_a, high_a): def construct(self, low_b, high_b, low_a, high_a):
kl1 = self.u1('kl_loss', 'Uniform', low_b, high_b) kl1 = self.u1('kl_loss', 'Uniform', low_b, high_b)
@@ -136,8 +137,8 @@ class UniformCrossEntropy(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(UniformCrossEntropy, self).__init__() super(UniformCrossEntropy, self).__init__()
self.u1 = nn.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = nn.Uniform(dtype=dtype.float32)
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = msd.Uniform(dtype=dtype.float32)


def construct(self, low_b, high_b, low_a, high_a): def construct(self, low_b, high_b, low_a, high_a):
h1 = self.u1('cross_entropy', 'Uniform', low_b, high_b) h1 = self.u1('cross_entropy', 'Uniform', low_b, high_b)
@@ -162,7 +163,7 @@ class UniformBasics(nn.Cell):
""" """
def __init__(self): def __init__(self):
super(UniformBasics, self).__init__() super(UniformBasics, self).__init__()
self.u = nn.Uniform(3.0, 4.0, dtype=dtype.float32)
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)


def construct(self): def construct(self):
mean = self.u('mean') mean = self.u('mean')


Loading…
Cancel
Save