| @@ -71,8 +71,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||||
| ## [Script and Sample Code](#contents) | ## [Script and Sample Code](#contents) | ||||
| ``` | ``` | ||||
| ├── model_zoo | |||||
| ├── README.md // descriptions about all the models | |||||
| ├── cv | |||||
| ├── alexnet | ├── alexnet | ||||
| ├── README.md // descriptions about alexnet | ├── README.md // descriptions about alexnet | ||||
| ├── requirements.txt // package needed | ├── requirements.txt // package needed | ||||
| @@ -116,8 +115,8 @@ sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt | |||||
| After training, the loss value will be achieved as follows: | After training, the loss value will be achieved as follows: | ||||
| # grep "loss is " train.log | |||||
| ``` | ``` | ||||
| # grep "loss is " train.log | |||||
| epoch: 1 step: 1, loss is 2.2791853 | epoch: 1 step: 1, loss is 2.2791853 | ||||
| ... | ... | ||||
| epoch: 1 step: 1536, loss is 1.9366643 | epoch: 1 step: 1536, loss is 1.9366643 | ||||
| @@ -171,7 +170,7 @@ You can view the results through the file "log.txt". The accuracy of the test da | |||||
| # [Description of Random Situation](#contents) | # [Description of Random Situation](#contents) | ||||
| In dataset.py, we set the seed inside “create_dataset" function. | |||||
| In dataset.py, we set the seed inside ```create_dataset``` function. | |||||
| # [ModelZoo Homepage](#contents) | # [ModelZoo Homepage](#contents) | ||||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | ||||
| @@ -77,8 +77,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||||
| ## [Script and Sample Code](#contents) | ## [Script and Sample Code](#contents) | ||||
| ``` | ``` | ||||
| ├── model_zoo | |||||
| ├── README.md // descriptions about all the models | |||||
| ├── cv | |||||
| ├── lenet | ├── lenet | ||||
| ├── README.md // descriptions about lenet | ├── README.md // descriptions about lenet | ||||
| ├── requirements.txt // package needed | ├── requirements.txt // package needed | ||||
| @@ -181,7 +180,7 @@ You can view the results through the file "log.txt". The accuracy of the test da | |||||
| # [Description of Random Situation](#contents) | # [Description of Random Situation](#contents) | ||||
| In dataset.py, we set the seed inside “create_dataset" function. | |||||
| In dataset.py, we set the seed inside ```create_dataset``` function. | |||||
| # [ModelZoo Homepage](#contents) | # [ModelZoo Homepage](#contents) | ||||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | ||||
| @@ -175,7 +175,7 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625. | |||||
| | Parameters | | | | | | Parameters | | | | | ||||
| | -------------------------- | ----------------------------- | ------------------------- | -------------------- | | | -------------------------- | ----------------------------- | ------------------------- | -------------------- | | ||||
| | Model Version | V1 | | | | | Model Version | V1 | | | | ||||
| | Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 | | |||||
| | Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 | | |||||
| | uploaded Date | 05/06/2020 | 05/22/2020 | | | | uploaded Date | 05/06/2020 | 05/22/2020 | | | ||||
| | MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 | | | MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 | | ||||
| | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | ||||
| @@ -47,7 +47,8 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||||
| ## [Mixed Precision](#contents) | ## [Mixed Precision](#contents) | ||||
| The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | ||||
| # [Environment Requirements](#contents) | # [Environment Requirements](#contents) | ||||
| @@ -228,7 +229,7 @@ acc=93.88%(TOP5) | |||||
| | Parameters | | | | | | Parameters | | | | | ||||
| | -------------------------- | ----------------------------- | ------------------------- | -------------------- | | | -------------------------- | ----------------------------- | ------------------------- | -------------------- | | ||||
| | Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 | | |||||
| | Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 | | |||||
| | uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 | | | uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 | | ||||
| | MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 | | | MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 | | ||||
| | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | ||||