|
|
|
@@ -33,6 +33,8 @@ EVENT_FILE_NAME_MARK = ".out.events.summary." |
|
|
|
EVENT_FILE_INIT_VERSION_MARK = "Mindspore.Event:" |
|
|
|
EVENT_FILE_INIT_VERSION = 1 |
|
|
|
|
|
|
|
F32_MIN, F32_MAX = np.finfo(np.float32).min, np.finfo(np.float32).max |
|
|
|
|
|
|
|
|
|
|
|
def get_event_file_name(prefix, suffix): |
|
|
|
""" |
|
|
|
@@ -287,12 +289,22 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: |
|
|
|
if issubclass(np_value.dtype.type, np.floating): |
|
|
|
summary.min = ma_value.min(fill_value=np.PINF) |
|
|
|
summary.max = ma_value.max(fill_value=np.NINF) |
|
|
|
if summary.min < F32_MIN or summary.max > F32_MAX: |
|
|
|
logger.warning( |
|
|
|
'Values(%r, %r) are too large, ' |
|
|
|
'you may encounter some undefined behaviours hereafter.', summary.min, summary.max) |
|
|
|
else: |
|
|
|
summary.min = ma_value.min() |
|
|
|
summary.max = ma_value.max() |
|
|
|
summary.sum = ma_value.sum(dtype=np.float64) |
|
|
|
bins = _calc_histogram_bins(valid) |
|
|
|
bins = np.linspace(summary.min, summary.max, bins + 1, dtype=np_value.dtype) |
|
|
|
first_edge, last_edge = summary.min, summary.max |
|
|
|
|
|
|
|
if not first_edge < last_edge: |
|
|
|
first_edge -= 0.5 |
|
|
|
last_edge += 0.5 |
|
|
|
|
|
|
|
bins = np.linspace(first_edge, last_edge, bins + 1, dtype=np_value.dtype) |
|
|
|
hists, edges = np.histogram(np_value, bins=bins) |
|
|
|
|
|
|
|
for hist, edge1, edge2 in zip(hists, edges, edges[1:]): |
|
|
|
|