|
|
|
@@ -1301,17 +1301,6 @@ class Dataset: |
|
|
|
return self.children[0].get_repeat_count() |
|
|
|
return 1 |
|
|
|
|
|
|
|
def get_class_indexing(self): |
|
|
|
""" |
|
|
|
Get the class index. |
|
|
|
|
|
|
|
Return: |
|
|
|
Dict, A str-to-int mapping from label name to index. |
|
|
|
""" |
|
|
|
if self.children: |
|
|
|
return self.children[0].get_class_indexing() |
|
|
|
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self))) |
|
|
|
|
|
|
|
def reset(self): |
|
|
|
"""Reset the dataset for next epoch.""" |
|
|
|
|
|
|
|
@@ -1448,7 +1437,7 @@ class MappableDataset(SourceDataset): |
|
|
|
sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is |
|
|
|
provided, the dataset will be split into n datasets of size s1, size s2, …, size sn |
|
|
|
respectively. If the sum of all sizes does not equal the original dataset size, an |
|
|
|
an error will occur. |
|
|
|
error will occur. |
|
|
|
If a list of floats [f1, f2, …, fn] is provided, all floats must be between 0 and 1 |
|
|
|
and must sum to 1, otherwise an error will occur. The dataset will be split into n |
|
|
|
Datasets of size round(f1*K), round(f2*K), …, round(fn*K) where K is the size of the |
|
|
|
@@ -1543,7 +1532,16 @@ class DatasetOp(Dataset): |
|
|
|
""" |
|
|
|
|
|
|
|
# No need for __init__ since it is the same as the super's init |
|
|
|
def get_class_indexing(self): |
|
|
|
""" |
|
|
|
Get the class index. |
|
|
|
|
|
|
|
Return: |
|
|
|
Dict, A str-to-int mapping from label name to index. |
|
|
|
""" |
|
|
|
if self.children: |
|
|
|
return self.children[0].get_class_indexing() |
|
|
|
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self))) |
|
|
|
|
|
|
|
class BucketBatchByLengthDataset(DatasetOp): |
|
|
|
""" |
|
|
|
@@ -2506,7 +2504,7 @@ class ImageFolderDatasetV2(MappableDataset): |
|
|
|
The generated dataset has two columns ['image', 'label']. |
|
|
|
The shape of the image column is [image_size] if decode flag is False, or [H,W,C] |
|
|
|
otherwise. |
|
|
|
The type of the image tensor is uint8. The label is just a scalar uint64 |
|
|
|
The type of the image tensor is uint8. The label is just a scalar int32 |
|
|
|
tensor. |
|
|
|
This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table |
|
|
|
below shows what input args are allowed and their expected behavior. |
|
|
|
@@ -2578,7 +2576,7 @@ class ImageFolderDatasetV2(MappableDataset): |
|
|
|
>>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1 |
|
|
|
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1}) |
|
|
|
>>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive) |
|
|
|
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions={".JPEG",".png"}) |
|
|
|
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions=[".JPEG",".png"]) |
|
|
|
""" |
|
|
|
|
|
|
|
@check_imagefolderdatasetv2 |
|
|
|
|