|
|
|
@@ -461,12 +461,12 @@ class Transpose(PrimitiveWithInfer): |
|
|
|
x_shape = x['shape'] |
|
|
|
p_value = perm['value'] |
|
|
|
x_type = x['dtype'] |
|
|
|
if len(x_shape) != len(p_value): |
|
|
|
raise ValueError('The dimension of x and perm must be equal.') |
|
|
|
|
|
|
|
validator.check_value_type("p_value", p_value, [tuple], self.name) |
|
|
|
validator.check_subclass("x_type", x_type, mstype.tensor, self.name) |
|
|
|
|
|
|
|
if len(x_shape) != len(p_value): |
|
|
|
raise ValueError('The dimension of x and perm must be equal.') |
|
|
|
|
|
|
|
tmp = list(p_value) |
|
|
|
for i, dim in enumerate(p_value): |
|
|
|
validator.check_integer("perm[%d]" % i, dim, 0, Rel.GE, self.name) |
|
|
|
@@ -2165,7 +2165,7 @@ class SpaceToBatch(PrimitiveWithInfer): |
|
|
|
of the input are zero padded according to paddings if necessary. |
|
|
|
|
|
|
|
Args: |
|
|
|
block_size (int): The block size of dividing block with value >= 1. |
|
|
|
block_size (int): The block size of dividing block with value >= 2. |
|
|
|
paddings (list): The padding value for H and W dimension, containing 2 sub list, each containing 2 int value. |
|
|
|
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to |
|
|
|
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible |
|
|
|
@@ -2199,10 +2199,11 @@ class SpaceToBatch(PrimitiveWithInfer): |
|
|
|
def __init__(self, block_size, paddings): |
|
|
|
"""Init SpaceToBatch""" |
|
|
|
validator.check_value_type('block_size', block_size, [int], self.name) |
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GT, self.name) |
|
|
|
validator.check('block_size', block_size, '', 2, Rel.GE, self.name) |
|
|
|
self.block_size = block_size |
|
|
|
validator.check('paddings shape', np.array(paddings).shape, '', (2, 2), Rel.EQ, self.name) |
|
|
|
for elem in itertools.chain(*paddings): |
|
|
|
validator.check_integer('paddings element', elem, 0, Rel.GE, self.name) |
|
|
|
validator.check_value_type('paddings element', elem, [int], self.name) |
|
|
|
self.paddings = paddings |
|
|
|
|
|
|
|
@@ -2266,10 +2267,11 @@ class BatchToSpace(PrimitiveWithInfer): |
|
|
|
def __init__(self, block_size, crops): |
|
|
|
"""Init BatchToSpace""" |
|
|
|
validator.check_value_type('block_size', block_size, [int], self.name) |
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GT, self.name) |
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GE, self.name) |
|
|
|
self.block_size = block_size |
|
|
|
validator.check('crops shape', np.array(crops).shape, '', (2, 2)) |
|
|
|
for elem in itertools.chain(*crops): |
|
|
|
validator.check_integer('crops element', elem, 0, Rel.GE, self.name) |
|
|
|
validator.check_value_type('crops element', elem, [int], self.name) |
|
|
|
self.crops = crops |
|
|
|
|
|
|
|
|