| @@ -15,17 +15,14 @@ | |||||
| */ | */ | ||||
| #include "nnacl/fp32/space_to_batch.h" | #include "nnacl/fp32/space_to_batch.h" | ||||
| #include "nnacl/arithmetic_common.h" | #include "nnacl/arithmetic_common.h" | ||||
| #include "nnacl/errorcode.h" | |||||
| #include "nnacl/op_base.h" | |||||
| void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter *param, int *in_shape, | |||||
| int *out_shape) { | |||||
| void DoSpaceToBatchNHWC(const float *input, float *output, int *block_sizes, int *in_shape, int *out_shape) { | |||||
| int out_dim0 = out_shape[0]; | int out_dim0 = out_shape[0]; | ||||
| int out_dim1 = out_shape[1]; | int out_dim1 = out_shape[1]; | ||||
| int out_dim2 = out_shape[2]; | int out_dim2 = out_shape[2]; | ||||
| int copy_num = out_shape[3]; | int copy_num = out_shape[3]; | ||||
| int block_w = param->block_sizes_[1]; | |||||
| int block_h = param->block_sizes_[0]; | |||||
| int block_w = block_sizes[1]; | |||||
| int block_h = block_sizes[0]; | |||||
| int in_strides[4]; | int in_strides[4]; | ||||
| ComputeStrides(in_shape, in_strides, 4); | ComputeStrides(in_shape, in_strides, 4); | ||||
| int out_strides[4]; | int out_strides[4]; | ||||
| @@ -48,8 +45,7 @@ void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter | |||||
| } | } | ||||
| } | } | ||||
| void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape, | |||||
| const float *pedding_h_data, const float *pedding_w_data) { | |||||
| void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape) { | |||||
| int in_h = in_shape[1]; | int in_h = in_shape[1]; | ||||
| int in_w = in_shape[2]; | int in_w = in_shape[2]; | ||||
| int in_c = in_shape[3]; | int in_c = in_shape[3]; | ||||
| @@ -67,13 +63,13 @@ void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | for (int i = 0; i < in_shape[0]; ++i) { | ||||
| size_t in_offset0 = i * in_strides[0]; | size_t in_offset0 = i * in_strides[0]; | ||||
| for (int pad_h_top = 0; pad_h_top < padding[0]; ++pad_h_top) { | for (int pad_h_top = 0; pad_h_top < padding[0]; ++pad_h_top) { | ||||
| memcpy(output + out_offset, pedding_h_data, ped_h_size); | |||||
| memset(output + out_offset, 0, ped_h_size); | |||||
| out_offset += ped_h_num; | out_offset += ped_h_num; | ||||
| } | } | ||||
| for (int j = 0; j < in_h; ++j) { | for (int j = 0; j < in_h; ++j) { | ||||
| size_t in_offset1 = in_offset0 + j * in_strides[1]; | size_t in_offset1 = in_offset0 + j * in_strides[1]; | ||||
| for (int pad_w_left = 0; pad_w_left < padding[2]; ++pad_w_left) { | for (int pad_w_left = 0; pad_w_left < padding[2]; ++pad_w_left) { | ||||
| memcpy(output + out_offset, pedding_w_data, ped_w_size); | |||||
| memset(output + out_offset, 0, ped_w_size); | |||||
| out_offset += out_c; | out_offset += out_c; | ||||
| } | } | ||||
| for (int k = 0; k < in_w; ++k) { | for (int k = 0; k < in_w; ++k) { | ||||
| @@ -82,12 +78,12 @@ void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, | |||||
| out_offset += in_c; | out_offset += in_c; | ||||
| } | } | ||||
| for (int pad_w_right = 0; pad_w_right < padding[3]; ++pad_w_right) { | for (int pad_w_right = 0; pad_w_right < padding[3]; ++pad_w_right) { | ||||
| memcpy(output + out_offset, pedding_w_data, ped_w_size); | |||||
| memset(output + out_offset, 0, ped_w_size); | |||||
| out_offset += out_c; | out_offset += out_c; | ||||
| } | } | ||||
| } | } | ||||
| for (int pad_h_bottom = 0; pad_h_bottom < padding[1]; ++pad_h_bottom) { | for (int pad_h_bottom = 0; pad_h_bottom < padding[1]; ++pad_h_bottom) { | ||||
| memcpy(output + out_offset, pedding_h_data, ped_h_size); | |||||
| memset(output + out_offset, 0, ped_h_size); | |||||
| out_offset += ped_h_num; | out_offset += ped_h_num; | ||||
| } | } | ||||
| } | } | ||||
| @@ -17,21 +17,21 @@ | |||||
| #define MINDSPORE_LITE_SRC_BACKEND_ARM_NNACL_FP32_SPACE_TO_BATCH_H_ | #define MINDSPORE_LITE_SRC_BACKEND_ARM_NNACL_FP32_SPACE_TO_BATCH_H_ | ||||
| #include "nnacl/op_base.h" | #include "nnacl/op_base.h" | ||||
| #define SPACE_TO_BATCH_BLOCK_SIZES_SIZE 2 | |||||
| #define SPACE_TO_BATCH_PADDINGS_SIZE 4 | |||||
| typedef struct SpaceToBatchParameter { | typedef struct SpaceToBatchParameter { | ||||
| OpParameter op_parameter_; | OpParameter op_parameter_; | ||||
| bool need_paddings_; | bool need_paddings_; | ||||
| int block_sizes_[4]; | int block_sizes_[4]; | ||||
| int paddings_[4]; | int paddings_[4]; | ||||
| int input_shape_[4]; | |||||
| int output_shape_[4]; | |||||
| int padded_in_shape_[4]; | |||||
| int padded_input_element_num; | |||||
| } SpaceToBatchParameter; | } SpaceToBatchParameter; | ||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| extern "C" { | extern "C" { | ||||
| #endif | #endif | ||||
| void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter *param, int *in_shape, int *out_shape); | |||||
| void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape, | |||||
| const float *pedding_h_data, const float *pedding_w_data); | |||||
| void DoSpaceToBatchNHWC(const float *input, float *output, int *block_sizes, int *in_shape, int *out_shape); | |||||
| void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| } | } | ||||
| #endif | #endif | ||||
| @@ -0,0 +1,91 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "nnacl/int8/space_to_batch_int8.h" | |||||
| #include "nnacl/arithmetic_common.h" | |||||
| void DoSpaceToBatchNHWCInt8(const int8_t *input, int8_t *output, int *block_sizes, int *in_shape, | |||||
| int *out_shape) { | |||||
| int out_dim0 = out_shape[0]; | |||||
| int out_dim1 = out_shape[1]; | |||||
| int out_dim2 = out_shape[2]; | |||||
| int copy_num = out_shape[3]; | |||||
| int block_w = block_sizes[1]; | |||||
| int block_h = block_sizes[0]; | |||||
| int in_strides[4]; | |||||
| ComputeStrides(in_shape, in_strides, 4); | |||||
| int out_strides[4]; | |||||
| ComputeStrides(out_shape, out_strides, 4); | |||||
| size_t copy_size = copy_num * sizeof(int8_t); | |||||
| size_t out_offset = 0; | |||||
| for (int n = 0; n < out_dim0; ++n) { | |||||
| int in_n = n % in_shape[0]; | |||||
| int32_t stride_w = (n / in_shape[0]) % block_w; | |||||
| int32_t stride_h = (n / in_shape[0]) / block_w; | |||||
| size_t in_offset0 = in_n * in_strides[0]; | |||||
| for (int h = 0; h < out_dim1; ++h) { | |||||
| size_t in_offset1 = in_offset0 + (h * block_h + stride_h) * in_strides[1]; | |||||
| for (int w = 0; w < out_dim2; ++w) { | |||||
| size_t in_offset2 = in_offset1 + (w * block_w + stride_w) * in_strides[2]; | |||||
| memcpy(output + out_offset, input + in_offset2, copy_size); | |||||
| out_offset += copy_num; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void DoSpaceToBatchPaddingNHWCInt8(const int8_t *input, int8_t *output, int *in_shape, int *padding, int *out_shape) { | |||||
| int in_h = in_shape[1]; | |||||
| int in_w = in_shape[2]; | |||||
| int in_c = in_shape[3]; | |||||
| int out_w = out_shape[2]; | |||||
| int out_c = out_shape[3]; | |||||
| size_t ped_h_num = out_w * out_c; | |||||
| size_t ped_h_size = ped_h_num * sizeof(int8_t); | |||||
| size_t ped_w_size = out_c * sizeof(int8_t); | |||||
| size_t out_offset = 0; | |||||
| int in_strides[4]; | |||||
| ComputeStrides(in_shape, in_strides, 4); | |||||
| int out_strides[4]; | |||||
| ComputeStrides(out_shape, out_strides, 4); | |||||
| size_t copy_size = in_c * sizeof(int8_t); | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_offset0 = i * in_strides[0]; | |||||
| for (int pad_h_top = 0; pad_h_top < padding[0]; ++pad_h_top) { | |||||
| memset(output + out_offset, 0, ped_h_size); | |||||
| out_offset += ped_h_num; | |||||
| } | |||||
| for (int j = 0; j < in_h; ++j) { | |||||
| size_t in_offset1 = in_offset0 + j * in_strides[1]; | |||||
| for (int pad_w_left = 0; pad_w_left < padding[2]; ++pad_w_left) { | |||||
| memset(output + out_offset, 0, ped_w_size); | |||||
| out_offset += out_c; | |||||
| } | |||||
| for (int k = 0; k < in_w; ++k) { | |||||
| size_t in_offset2 = in_offset1 + k * in_strides[2]; | |||||
| memcpy(output + out_offset, input + in_offset2, copy_size); | |||||
| out_offset += in_c; | |||||
| } | |||||
| for (int pad_w_right = 0; pad_w_right < padding[3]; ++pad_w_right) { | |||||
| memset(output + out_offset, 0, ped_w_size); | |||||
| out_offset += out_c; | |||||
| } | |||||
| } | |||||
| for (int pad_h_bottom = 0; pad_h_bottom < padding[1]; ++pad_h_bottom) { | |||||
| memset(output + out_offset, 0, ped_h_size); | |||||
| out_offset += ped_h_num; | |||||
| } | |||||
| } | |||||
| } | |||||
| @@ -0,0 +1,30 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| #define MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| #include "nnacl/op_base.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| void DoSpaceToBatchNHWCInt8(const int8_t *input, int8_t *output, int *block_sizes, int *in_shape, int *out_shape); | |||||
| void DoSpaceToBatchPaddingNHWCInt8(const int8_t *input, int8_t *output, int *in_shape, int *padding, int *out_shape); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| @@ -15,100 +15,52 @@ | |||||
| */ | */ | ||||
| #include "src/runtime/kernel/arm/fp32/space_to_batch.h" | #include "src/runtime/kernel/arm/fp32/space_to_batch.h" | ||||
| #include <vector> | #include <vector> | ||||
| #include "schema/ops_generated.h" | |||||
| #include "schema/model_generated.h" | |||||
| #include "src/kernel_registry.h" | #include "src/kernel_registry.h" | ||||
| #include "nnacl/fp32/space_to_batch.h" | #include "nnacl/fp32/space_to_batch.h" | ||||
| #include "nnacl/errorcode.h" | |||||
| #include "include/errorcode.h" | #include "include/errorcode.h" | ||||
| #include "src/runtime/runtime_api.h" | |||||
| using mindspore::lite::KernelRegistrar; | using mindspore::lite::KernelRegistrar; | ||||
| using mindspore::lite::RET_ERROR; | using mindspore::lite::RET_ERROR; | ||||
| using mindspore::lite::RET_FORMAT_ERR; | using mindspore::lite::RET_FORMAT_ERR; | ||||
| using mindspore::lite::RET_OK; | using mindspore::lite::RET_OK; | ||||
| using mindspore::lite::RET_OP_EXECUTE_FAILURE; | |||||
| using mindspore::schema::PrimitiveType_SpaceToBatch; | using mindspore::schema::PrimitiveType_SpaceToBatch; | ||||
| using mindspore::schema::PrimitiveType_SpaceToBatchND; | using mindspore::schema::PrimitiveType_SpaceToBatchND; | ||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| namespace { | |||||
| size_t EnumElement(int *shape, int n_dims) { | |||||
| size_t total = 1; | |||||
| for (int i = 0; i < n_dims; i++) { | |||||
| total *= shape[i]; | |||||
| } | |||||
| return total; | |||||
| } | |||||
| } // namespace | |||||
| int SpaceToBatchCPUKernel::Init() { | int SpaceToBatchCPUKernel::Init() { | ||||
| SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | |||||
| for (int i = 0; i < SPACE_TO_BATCH_PADDINGS_SIZE; ++i) { | |||||
| if (param->paddings_[i] != 0) { | |||||
| param->need_paddings_ = true; | |||||
| break; | |||||
| } | |||||
| } | |||||
| if (!InferShapeDone()) { | if (!InferShapeDone()) { | ||||
| return RET_OK; | return RET_OK; | ||||
| } | } | ||||
| return ReSize(); | return ReSize(); | ||||
| } | } | ||||
| void SpaceToBatchCPUKernel::FreeTmpBuffer() { | |||||
| if (pedding_h_data_ != nullptr) { | |||||
| context_->allocator->Free(pedding_h_data_); | |||||
| pedding_h_data_ = nullptr; | |||||
| } | |||||
| if (pedding_w_data_ != nullptr) { | |||||
| context_->allocator->Free(pedding_w_data_); | |||||
| pedding_w_data_ = nullptr; | |||||
| } | |||||
| if (pedding_input_ != nullptr) { | |||||
| context_->allocator->Free(pedding_input_); | |||||
| pedding_input_ = nullptr; | |||||
| } | |||||
| } | |||||
| int SpaceToBatchCPUKernel::ReSize() { | int SpaceToBatchCPUKernel::ReSize() { | ||||
| if (in_tensors_[0]->GetFormat() != schema::Format::Format_NHWC) { | |||||
| auto input_tensor = in_tensors_.at(0); | |||||
| auto output_tensor = out_tensors_.at(0); | |||||
| if (input_tensor->GetFormat() != schema::Format_NHWC) { | |||||
| MS_LOG(ERROR) << "space_to_batch only support NHWC now!"; | MS_LOG(ERROR) << "space_to_batch only support NHWC now!"; | ||||
| return RET_FORMAT_ERR; | return RET_FORMAT_ERR; | ||||
| } | } | ||||
| FreeTmpBuffer(); | |||||
| SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | ||||
| if (!param->need_paddings_) { | |||||
| return RET_OK; | |||||
| } | |||||
| auto input = in_tensors_[0]; | |||||
| auto in_shape = input->shape(); | |||||
| padded_in_shape_ = in_shape; | |||||
| padded_in_shape_[1] = in_shape[1] + param->paddings_[0] + param->paddings_[1]; | |||||
| padded_in_shape_[2] = in_shape[2] + param->paddings_[2] + param->paddings_[3]; | |||||
| auto num_elements_padded = EnumElement(padded_in_shape_.data(), in_shape.size()); | |||||
| auto output_shape = out_tensors_[0]->shape(); | |||||
| auto pedding_h_size = padded_in_shape_[2] * output_shape[3] * sizeof(float); | |||||
| pedding_h_data_ = reinterpret_cast<float *>(context_->allocator->Malloc(pedding_h_size)); | |||||
| if (pedding_h_data_ == nullptr) { | |||||
| MS_LOG(ERROR) << "malloc pedding h data fail!"; | |||||
| return RET_ERROR; | |||||
| for (size_t i = 0; i < DIMENSION_4D; i++) { | |||||
| param->input_shape_[i] = input_tensor->shape().at(i); | |||||
| param->output_shape_[i] = output_tensor->shape().at(i); | |||||
| } | } | ||||
| auto pedding_w_size = output_shape[3] * sizeof(float); | |||||
| pedding_w_data_ = reinterpret_cast<float *>(context_->allocator->Malloc(pedding_w_size)); | |||||
| if (pedding_w_data_ == nullptr) { | |||||
| MS_LOG(ERROR) << "malloc pedding w data fail!"; | |||||
| FreeTmpBuffer(); | |||||
| return RET_ERROR; | |||||
| for (int i = 0; i < DIMENSION_4D; ++i) { | |||||
| if (param->paddings_[i] != 0) { | |||||
| param->need_paddings_ = true; | |||||
| break; | |||||
| } | |||||
| } | } | ||||
| pedding_input_ = reinterpret_cast<float *>(context_->allocator->Malloc(num_elements_padded * sizeof(float))); | |||||
| if (pedding_input_ == nullptr) { | |||||
| MS_LOG(ERROR) << "malloc pedding buffer fail!"; | |||||
| return RET_ERROR; | |||||
| if (param->need_paddings_) { | |||||
| param->padded_in_shape_[kNHWC_N] = input_tensor->shape().at(kNHWC_N); | |||||
| param->padded_in_shape_[kNHWC_H] = input_tensor->shape().at(kNHWC_H) + param->paddings_[0] + param->paddings_[1]; | |||||
| param->padded_in_shape_[kNHWC_W] = input_tensor->shape().at(kNHWC_W) + param->paddings_[2] + param->paddings_[3]; | |||||
| param->padded_in_shape_[kNHWC_C] = input_tensor->shape().at(kNHWC_C); | |||||
| param->padded_input_element_num = param->padded_in_shape_[kNHWC_N] * param->padded_in_shape_[kNHWC_H] * | |||||
| param->padded_in_shape_[kNHWC_W] * param->padded_in_shape_[kNHWC_C]; | |||||
| } | } | ||||
| memset(pedding_h_data_, 0, pedding_h_size); | |||||
| memset(pedding_w_data_, 0, pedding_w_size); | |||||
| return RET_OK; | return RET_OK; | ||||
| } | } | ||||
| @@ -118,23 +70,34 @@ int SpaceToBatchCPUKernel::Run() { | |||||
| MS_LOG(ERROR) << "Prepare fail!ret: " << ret; | MS_LOG(ERROR) << "Prepare fail!ret: " << ret; | ||||
| return ret; | return ret; | ||||
| } | } | ||||
| auto input = in_tensors_[0]; | |||||
| auto output = out_tensors_[0]; | |||||
| const float *input_ptr_ = reinterpret_cast<const float *>(input->MutableData()); | |||||
| float *output_ptr_ = reinterpret_cast<float *>(output->MutableData()); | |||||
| auto input_tensor = in_tensors_.at(0); | |||||
| auto output_tensor = out_tensors_.at(0); | |||||
| auto input_ptr = reinterpret_cast<const float *>(input_tensor->MutableData()); | |||||
| auto output_ptr = reinterpret_cast<float *>(output_tensor->MutableData()); | |||||
| SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | ||||
| auto in_shape = input->shape(); | |||||
| auto out_shape = output->shape(); | |||||
| if (param->need_paddings_) { | if (param->need_paddings_) { | ||||
| DoSpaceToBatchPaddingNHWC(input_ptr_, pedding_input_, in_shape.data(), param->paddings_, padded_in_shape_.data(), | |||||
| pedding_h_data_, pedding_w_data_); | |||||
| DoSpaceToBatchNHWC(pedding_input_, output_ptr_, param, padded_in_shape_.data(), out_shape.data()); | |||||
| return RET_OK; | |||||
| padded_input_ = context_->allocator->Malloc(param->padded_input_element_num * sizeof(float)); | |||||
| if (padded_input_ == nullptr) { | |||||
| MS_LOG(ERROR) << "Memory allocation failed"; | |||||
| return RET_ERROR; | |||||
| } | |||||
| auto padded_input = reinterpret_cast<float *>(padded_input_); | |||||
| DoSpaceToBatchPaddingNHWC(input_ptr, padded_input, param->input_shape_, param->paddings_, param->padded_in_shape_); | |||||
| DoSpaceToBatchNHWC(padded_input, output_ptr, param->block_sizes_, param->padded_in_shape_, param->output_shape_); | |||||
| FreeTmpBuffer(); | |||||
| } else { | } else { | ||||
| DoSpaceToBatchNHWC(input_ptr_, output_ptr_, param, in_shape.data(), out_shape.data()); | |||||
| return RET_OK; | |||||
| DoSpaceToBatchNHWC(input_ptr, output_ptr, param->block_sizes_, param->input_shape_, param->output_shape_); | |||||
| } | } | ||||
| } // namespace mindspore::kernel | |||||
| return RET_OK; | |||||
| } | |||||
| void SpaceToBatchCPUKernel::FreeTmpBuffer() { | |||||
| if (padded_input_ != nullptr) { | |||||
| context_->allocator->Free(padded_input_); | |||||
| padded_input_ = nullptr; | |||||
| } | |||||
| } | |||||
| kernel::LiteKernel *CpuSpaceToBatchFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | kernel::LiteKernel *CpuSpaceToBatchFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | ||||
| const std::vector<lite::Tensor *> &outputs, OpParameter *param, | const std::vector<lite::Tensor *> &outputs, OpParameter *param, | ||||
| @@ -149,12 +112,11 @@ kernel::LiteKernel *CpuSpaceToBatchFp32KernelCreator(const std::vector<lite::Ten | |||||
| MS_LOG(ERROR) << "new SpaceToBatchCPUKernel fail!"; | MS_LOG(ERROR) << "new SpaceToBatchCPUKernel fail!"; | ||||
| return nullptr; | return nullptr; | ||||
| } | } | ||||
| auto ret = kernel->Init(); | auto ret = kernel->Init(); | ||||
| if (ret != RET_OK) { | if (ret != RET_OK) { | ||||
| delete kernel; | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << param->name_ | MS_LOG(ERROR) << "Init kernel failed, name: " << param->name_ | ||||
| << ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(param->type_)); | << ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(param->type_)); | ||||
| delete kernel; | |||||
| return nullptr; | return nullptr; | ||||
| } | } | ||||
| return kernel; | return kernel; | ||||
| @@ -27,18 +27,16 @@ class SpaceToBatchCPUKernel : public LiteKernel { | |||||
| const mindspore::lite::PrimitiveC *primitive) | const mindspore::lite::PrimitiveC *primitive) | ||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | ||||
| ~SpaceToBatchCPUKernel() { FreeTmpBuffer(); } | |||||
| ~SpaceToBatchCPUKernel() {} | |||||
| int Init() override; | int Init() override; | ||||
| int ReSize() override; | int ReSize() override; | ||||
| int Run() override; | int Run() override; | ||||
| private: | |||||
| protected: | |||||
| size_t EnumElement(int *shape, int n_dims); | |||||
| void FreeTmpBuffer(); | void FreeTmpBuffer(); | ||||
| float *pedding_input_ = nullptr; | |||||
| float *pedding_h_data_ = nullptr; | |||||
| float *pedding_w_data_ = nullptr; | |||||
| std::vector<int> padded_in_shape_; | |||||
| void *padded_input_ = nullptr; | |||||
| }; | }; | ||||
| } // namespace mindspore::kernel | } // namespace mindspore::kernel | ||||
| @@ -0,0 +1,84 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/arm/int8/space_to_batch_int8.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "nnacl/fp32/space_to_batch.h" | |||||
| #include "nnacl/int8/space_to_batch_int8.h" | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::lite::RET_ERROR; | |||||
| using mindspore::lite::RET_OK; | |||||
| using mindspore::schema::PrimitiveType_SpaceToBatch; | |||||
| using mindspore::schema::PrimitiveType_SpaceToBatchND; | |||||
| namespace mindspore::kernel { | |||||
| int SpaceToBatchInt8CPUKernel::Run() { | |||||
| auto ret = Prepare(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Prepare fail!ret: " << ret; | |||||
| return ret; | |||||
| } | |||||
| auto input_tensor = in_tensors_.at(0); | |||||
| auto output_tensor = out_tensors_.at(0); | |||||
| auto input_ptr = reinterpret_cast<const int8_t *>(input_tensor->MutableData()); | |||||
| auto output_ptr = reinterpret_cast<int8_t *>(output_tensor->MutableData()); | |||||
| SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_); | |||||
| if (param->need_paddings_) { | |||||
| padded_input_ = context_->allocator->Malloc(param->padded_input_element_num * sizeof(int8_t)); | |||||
| if (padded_input_ == nullptr) { | |||||
| MS_LOG(ERROR) << "Memory allocation failed"; | |||||
| return RET_ERROR; | |||||
| } | |||||
| auto padded_input = reinterpret_cast<int8_t *>(padded_input_); | |||||
| DoSpaceToBatchPaddingNHWCInt8(input_ptr, padded_input, param->input_shape_, param->paddings_, | |||||
| param->padded_in_shape_); | |||||
| DoSpaceToBatchNHWCInt8(padded_input, output_ptr, param->block_sizes_, param->padded_in_shape_, | |||||
| param->output_shape_); | |||||
| FreeTmpBuffer(); | |||||
| } else { | |||||
| DoSpaceToBatchNHWCInt8(input_ptr, output_ptr, param->block_sizes_, param->input_shape_, param->output_shape_); | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| kernel::LiteKernel *CpuSpaceToBatchInt8KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, | |||||
| OpParameter *param, const lite::Context *ctx, | |||||
| const kernel::KernelKey &desc, | |||||
| const mindspore::lite::PrimitiveC *primitive) { | |||||
| if (param == nullptr) { | |||||
| MS_LOG(ERROR) << "Input param is nullptr!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto *kernel = new (std::nothrow) SpaceToBatchInt8CPUKernel(param, inputs, outputs, ctx, primitive); | |||||
| if (kernel == nullptr) { | |||||
| MS_LOG(ERROR) << "new SpaceToBatchInt8CPUKernel fail!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << param->name_ | |||||
| << ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(param->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_SpaceToBatch, CpuSpaceToBatchInt8KernelCreator) | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_SpaceToBatchND, CpuSpaceToBatchInt8KernelCreator) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -0,0 +1,36 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| #include <vector> | |||||
| #include "src/runtime/kernel/arm/fp32/space_to_batch.h" | |||||
| namespace mindspore::kernel { | |||||
| class SpaceToBatchInt8CPUKernel : public SpaceToBatchCPUKernel { | |||||
| public: | |||||
| SpaceToBatchInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, const lite::Context *ctx, | |||||
| const mindspore::lite::PrimitiveC *primitive) | |||||
| : SpaceToBatchCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||||
| ~SpaceToBatchInt8CPUKernel() {} | |||||
| int Run() override; | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_ | |||||
| @@ -38,7 +38,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest4) { | |||||
| SpaceToBatchParameter param; | SpaceToBatchParameter param; | ||||
| param.block_sizes_[0] = 2; | param.block_sizes_[0] = 2; | ||||
| param.block_sizes_[1] = 1; | param.block_sizes_[1] = 1; | ||||
| DoSpaceToBatchNHWC(input.data(), out, ¶m, in_shape.data(), out_shape.data()); | |||||
| DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -56,7 +56,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest5) { | |||||
| SpaceToBatchParameter param; | SpaceToBatchParameter param; | ||||
| param.block_sizes_[0] = 1; | param.block_sizes_[0] = 1; | ||||
| param.block_sizes_[1] = 2; | param.block_sizes_[1] = 2; | ||||
| DoSpaceToBatchNHWC(input.data(), out, ¶m, in_shape.data(), out_shape.data()); | |||||
| DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -74,7 +74,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest6) { | |||||
| SpaceToBatchParameter param; | SpaceToBatchParameter param; | ||||
| param.block_sizes_[0] = 2; | param.block_sizes_[0] = 2; | ||||
| param.block_sizes_[1] = 2; | param.block_sizes_[1] = 2; | ||||
| DoSpaceToBatchNHWC(input.data(), out, ¶m, in_shape.data(), out_shape.data()); | |||||
| DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -96,7 +96,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest7) { | |||||
| SpaceToBatchParameter param; | SpaceToBatchParameter param; | ||||
| param.block_sizes_[0] = 2; | param.block_sizes_[0] = 2; | ||||
| param.block_sizes_[1] = 2; | param.block_sizes_[1] = 2; | ||||
| DoSpaceToBatchNHWC(input.data(), out, ¶m, in_shape.data(), out_shape.data()); | |||||
| DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -115,10 +115,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest8) { | |||||
| std::vector<int> in_shape = {1, 4, 4, 2}; | std::vector<int> in_shape = {1, 4, 4, 2}; | ||||
| std::vector<int> out_shape = {1, 5, 5, 2}; | std::vector<int> out_shape = {1, 5, 5, 2}; | ||||
| std::vector<int> padding = {0, 1, 0, 1}; | std::vector<int> padding = {0, 1, 0, 1}; | ||||
| std::vector<float> pedding_h(10, 0); | |||||
| std::vector<float> pedding_w(2, 0); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data(), pedding_h.data(), | |||||
| pedding_w.data()); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -138,10 +135,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest9) { | |||||
| std::vector<int> in_shape = {1, 4, 4, 2}; | std::vector<int> in_shape = {1, 4, 4, 2}; | ||||
| std::vector<int> out_shape = {1, 6, 6, 2}; | std::vector<int> out_shape = {1, 6, 6, 2}; | ||||
| std::vector<int> padding = {1, 1, 1, 1}; | std::vector<int> padding = {1, 1, 1, 1}; | ||||
| std::vector<float> pedding_h(12, 0); | |||||
| std::vector<float> pedding_w(2, 0); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data(), pedding_h.data(), | |||||
| pedding_w.data()); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -163,14 +157,11 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest10) { | |||||
| std::vector<int> pedding_out_shape = {1, 6, 6, 2}; | std::vector<int> pedding_out_shape = {1, 6, 6, 2}; | ||||
| std::vector<int> out_shape = {4, 3, 3, 2}; | std::vector<int> out_shape = {4, 3, 3, 2}; | ||||
| std::vector<int> padding = {1, 1, 1, 1}; | std::vector<int> padding = {1, 1, 1, 1}; | ||||
| std::vector<float> pedding_h(12, 0); | |||||
| std::vector<float> pedding_w(2, 0); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), pedding_out, in_shape.data(), padding.data(), pedding_out_shape.data(), | |||||
| pedding_h.data(), pedding_w.data()); | |||||
| DoSpaceToBatchPaddingNHWC(input.data(), pedding_out, in_shape.data(), padding.data(), pedding_out_shape.data()); | |||||
| SpaceToBatchParameter param; | SpaceToBatchParameter param; | ||||
| param.block_sizes_[0] = 2; | param.block_sizes_[0] = 2; | ||||
| param.block_sizes_[1] = 2; | param.block_sizes_[1] = 2; | ||||
| DoSpaceToBatchNHWC(pedding_out, out, ¶m, pedding_out_shape.data(), out_shape.data()); | |||||
| DoSpaceToBatchNHWC(pedding_out, out, param.block_sizes_, pedding_out_shape.data(), out_shape.data()); | |||||
| for (int i = 0; i < kOutSize; ++i) { | for (int i = 0; i < kOutSize; ++i) { | ||||
| std::cout << out[i] << " "; | std::cout << out[i] << " "; | ||||
| } | } | ||||
| @@ -0,0 +1,57 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <iostream> | |||||
| #include "common/common_test.h" | |||||
| #include "nnacl/fp32/space_to_batch.h" | |||||
| #include "mindspore/lite/src/kernel_registry.h" | |||||
| namespace mindspore { | |||||
| class SpaceToBatchTestInt8 : public mindspore::CommonTest { | |||||
| public: | |||||
| SpaceToBatchTestInt8() {} | |||||
| }; | |||||
| TEST_F(SpaceToBatchTestInt8, test1) { | |||||
| lite::Tensor in_tensor(kNumberTypeInt8, {1, 2, 2, 1}); | |||||
| lite::Tensor out_tensor(kNumberTypeInt8, {4, 2, 2, 1}); | |||||
| int8_t input_data[] = {1, 2, 3, 4}; | |||||
| int8_t output_data[16] = {0}; | |||||
| in_tensor.SetData(input_data); | |||||
| out_tensor.SetData(output_data); | |||||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||||
| SpaceToBatchParameter parameter = {{}, false, {2, 2}, {1, 1, 1, 1}}; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SpaceToBatchND}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| auto ctx = std::make_shared<lite::Context>(); | |||||
| auto kernel = creator(inputs, outputs, reinterpret_cast<OpParameter *>(¶meter), ctx.get(), desc, nullptr); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto ret = kernel->Run(); | |||||
| EXPECT_EQ(0, ret); | |||||
| int8_t expect[] = {0, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 0}; | |||||
| for (int i = 0; i < 8; ++i) { | |||||
| EXPECT_EQ(output_data[i], expect[i]); | |||||
| } | |||||
| in_tensor.SetData(nullptr); | |||||
| out_tensor.SetData(nullptr); | |||||
| } | |||||
| } // namespace mindspore | |||||